









ENGLISH

**User Manual** version 1.08

# **TLB4**

# **COMMUNICATION PROTOCOLS**

### SYMBOLS

Here are the symbols used in the manual to draw the reader's attention:



Caution! Risk of electric shock.



Caution! This operation must be performed by skilled personnel.



Pay particular attention to the following instructions.



Further information.

### TABLE OF CONTENTS

| INTRODUCTION TO THE USER MANUAL                      | 1          |
|------------------------------------------------------|------------|
| FIELDBUSES                                           | 1          |
| PARAMETERS OF THE COMMUNICATION INTERFACES           | 1          |
| COMMAND EXECUTION STATUS                             | 5          |
| MODBUS-RTU                                           | 6          |
| FUNCTIONS SUPPORTED IN MODBUS                        | 7          |
| COMMUNICATION ERROR MANAGEMENT                       | 8          |
| LIST OF AVAILABLE REGISTERS                          | 9          |
| COMMUNICATION EXAMPLES                               | . 11       |
| CANOPEN                                              | . 14       |
| TECHNICAL SPECIFICATIONS AND CONNECTIONS             | . 14       |
| INSTRUMENT SETUP                                     | . 14       |
| PC/PLC SETUP                                         | . 15       |
| DEVICENET                                            | .16        |
| TECHNICAL SPECIFICATIONS AND CONNECTIONS             | . 16       |
| INSTRUMENT SETUP                                     | . 16       |
| PC/PLC SETUP                                         | . 17       |
| CC-LINK                                              | . 18       |
| TECHNICAL SPECIFICATIONS AND CONNECTIONS             | . 18       |
| INSTRUMENT SETUP                                     | . 18       |
| PC/PLC SETUP                                         | . 19       |
| RX/RY                                                | . 19       |
| RWw/RWr                                              | . 26       |
| CER PROCEDURE                                        | . 27       |
|                                                      | . 2/       |
|                                                      | . 28       |
| TECHNICAL SPECIFICATIONS                             | . 28       |
| INSTRUMENT SETUP                                     | . 28       |
| PC SETUP                                             | . 29<br>20 |
|                                                      | . 30       |
|                                                      | . 33       |
| TECHNICAL SPECIFICATIONS                             | . 33       |
|                                                      | . 33       |
|                                                      | . 34       |
| TECHNICAL SPECIFICATIONS                             | . 34       |
|                                                      | . 34       |
|                                                      | . 30       |
|                                                      | . 31       |
| TECHNICAL SPECIFICATIONS                             | . 31       |
| FU/FLU JE I UF<br>ID ADDRESS SETTING                 | . J/<br>27 |
|                                                      | . J/<br>20 |
|                                                      | . Jy<br>20 |
| I EUTINIUAL SPEUIFIUA I IUNS<br>INSTDI IMENT SETI ID | . 39       |
| INSTRUMENT SETUP<br>PC/PLC SETUP                     | . 39<br>20 |
|                                                      | . 53       |

| PROFIBUS-DP                                                    | 40 |
|----------------------------------------------------------------|----|
| TECHNICAL SPECIFICATIONS                                       | 40 |
| INSTRUMENT SETUP                                               | 40 |
| PC/PLC SETUP                                                   | 41 |
| PROFINET-IO                                                    | 42 |
| TECHNICAL SPECIFICATIONS                                       | 42 |
| INSTRUMENT SETUP                                               | 42 |
| PC/PLC SETUP                                                   | 43 |
| SERCOSIII                                                      | 44 |
| TECHNICAL SPECIFICATIONS                                       | 44 |
| INSTRUMENT SETUP                                               | 44 |
| PC/PLC SETUP                                                   | 44 |
| PROGRAMMING OF SYSTEM PARAMETERS                               | 45 |
| WEIGHT VALUES                                                  | 45 |
| THEORETICAL CALIBRATION                                        | 45 |
| THEORETICAL FULL SCALE                                         | 45 |
| SENSITIVITY                                                    | 46 |
| DIVISION                                                       | 46 |
| MAXIMUM CAPACITY (BASE program)                                | 48 |
| TARE WEIGHT ZERO SETTING                                       | 48 |
| ZERO VALUE MANUAL ENTRY                                        | 48 |
| REAL CALIBRATION (WITH SAMPLE WEIGHTS)                         | 49 |
| STABILITY                                                      | 51 |
| ACTIVE CHANNELS MANAGEMENT                                     | 52 |
| MANUAL SETTING OF ACTIVE CHANNELS                              | 52 |
| AUTOMATIC SETTING OF ACTIVE CHANNELS                           | 52 |
| EQUALIZATION                                                   | 53 |
| REAL EQUALIZATION                                              | 53 |
| THEORETICAL EQUALIZATION                                       | 54 |
| EQUALIZATION DELETION                                          | 55 |
| FILTER ON THE WEIGHT                                           | 56 |
| ANTI-PEAK                                                      | 57 |
| ZERO PARAMETERS                                                | 57 |
| RESETTABLE WEIGHT SETTING FOR SMALL WEIGHT CHANGES             | 57 |
| AUTOMATIC ZERO SETTING AT POWER-ON                             | 58 |
| ZERO TRACKING                                                  | 58 |
| SETTING UNITS OF MEASURE                                       | 59 |
| DISPLAY COEFFICIENT (BASE program)                             | 60 |
| SEMI-AUTOMATIC TARE (NET/GROSS)                                | 61 |
| PRESET TARE                                                    | 61 |
| SEMI-AUTOMATIC ZERO (WEIGHT ZERO-SETTING FOR SMALL VARIATIONS) | 62 |
| PEAK (BASE program)                                            | 63 |
| ANALOG OUTPUT (TLB4 ONLY)                                      | 63 |
| AUTOMATIC DIAGNOSTICS OF LOAD DISTRIBUTION                     | 64 |
| LOAD DIAGNOSTICS                                               | 64 |
| DIAGNOSTICS ON ZERO                                            | 65 |

| CONFIRMATION OF THE DIAGNOSTICS ERROR                 | . 66 |
|-------------------------------------------------------|------|
| READING OF THE LOAD PERCENTAGES ON EACH CHANNEL       | . 66 |
| READING OF THE RESPONSE SIGNALS OF THE CELLS IN mV    | . 68 |
| OUTPUTS AND INPUTS CONFIGURATION (BASE program)       | . 69 |
| READING OF THE DIGITAL INPUTS AND OUTPUTS STATUS      |      |
| DIGITAL OUTPUTS COMMAND                               | . 72 |
| OUTPUTS AND INPUTS CONFIGURATION (LOAD program)       | .72  |
| SETPOINT PROGRAMMING (BASE program)                   | .73  |
| SETPOINT                                              |      |
| HYSTERESIS                                            | 74   |
| OVERLOAD THRESHOLD FOR SINGLE CHANNEL                 | . 75 |
| BATCHING (LOAD program)                               | .76  |
|                                                       | .76  |
| BATCHING SEQUENCE PROGRAMMING                         | . 76 |
| BATCHING START                                        | . 76 |
| BATCHING STOP AND PAUSE                               |      |
| WAITING PHASE                                         | . 77 |
| BATCHING DATA READING                                 | . 78 |
| OPERATION SETTINGS                                    | .79  |
| PROGRAMMING OF BATCHING CONSTANTS                     | . 80 |
| MINIMUM WEIGHT                                        | 80   |
| MAXIMUM WEIGHT                                        | . 80 |
| SAFE EMPTYING TIME                                    | . 81 |
| WAITING TIME                                          | . 81 |
| NO COMPARISON TIME                                    | . 81 |
| NO PRODUCT LOAD TIME                                  | . 82 |
| NO PRODUCT UNLOAD TIME                                | . 82 |
| FALL                                                  | . 83 |
| TOLERANCE                                             | . 84 |
| SLOW                                                  | . 84 |
| TAPPING FUNCTION                                      | . 85 |
| AUTOTARE                                              | . 86 |
|                                                       | . 86 |
| STABLE TARE                                           | . 8/ |
| CONSUMPTION                                           | . 0/ |
|                                                       | . 00 |
|                                                       | .09  |
| BATCHING INSTRUMENT STATUS (BIS)                      | .90  |
|                                                       | . 91 |
| ALARM MANAGEMENT                                      | 92   |
| READING OF THE ALARMS STATUS                          | . 94 |
| ALARMS MANAGEMENT DURING THE BATCHING                 | . 94 |
| USE AND CALIBRATION OF CONVERTER POINTS               | 95   |
| READING DIVISIONS WITH SIGN OF EACH WEIGHTING CHANNEL | . 95 |
| Mode: 4x divisions LowRes                             | . 95 |
| Mode: 4x divisions HiRes                              | . 96 |

| EXAMPLE OF USE OF CONVERTER POINTS                         | 97  |
|------------------------------------------------------------|-----|
| SERIAL PROTOCOLS                                           | 98  |
| FAST CONTINUOUS TRANSMISSION PROTOCOL                      |     |
| CONTINUOUS WEIGHT TRANSMISSION TO REMOTE DISPLAYS PROTOCOL | 100 |
| ASCII BIDIRECTIONAL PROTOCOL                               | 101 |

### INTRODUCTION TO THE USER MANUAL

This manual explains the operation of the instrument through the use of the communication interfaces, to which reference is made as per the table; moreover, the abbreviation of the registers will be used instead of the extended name (see section **FIELDBUSES**). For more information on the parameters and functions illustrated, consult the user manual of the instrument.

| INTERFACE   | FIELDBUS                                                                             |
|-------------|--------------------------------------------------------------------------------------|
| MODBUS      | MODBUS-RTU – MODBUS/TCP                                                              |
| PROFIBUS-DP | PROFIBUS-DP                                                                          |
| GENERIC     | CANOPEN – DEVICENET – ETHERCAT – ETHERNET/IP<br>POWERLINK – PROFINET IO – SERCOS III |
| CC-LINK     | CC-LINK                                                                              |

### FIELDBUSES

### PARAMETERS OF THE COMMUNICATION INTERFACES

Not all parameters listed in this section are used by all interfaces; for more information refer to the section of the specific fieldbus.

### GROSS WEIGHT (GW) - NET WEIGHT (NW) - PEAK WEIGHT (PW)

The weight values are expressed as positive integer numbers, including decimal figures, but without decimal point. Refer to the section of the specific fieldbus to obtain information about sign and possible errors on the weight.

### **EXCHANGE REGISTERS (R1, W1)**

These registers are used for instrument management operations. There is a read (R1) and a write (W1) exchange register.

### STATUS REGISTER (SR1)

| Bit 0 | Load cell error                        | Bit 8  | Net weight negative sign            |
|-------|----------------------------------------|--------|-------------------------------------|
| Bit 1 | AD converter malfunction               | Bit 9  | Peak weight negative sign           |
| Bit 2 | Maximum weight exceeded by 9 divisions | Bit 10 | Net display mode                    |
| Bit 3 | Gross weight over 110% of full scale   | Bit 11 | Weight stability                    |
|       | Gross weight over 999999               | Bit 12 | Weight within ±¼ of a division      |
| DIL 4 | or less than -999999                   |        | around ZERO                         |
| Dit 5 | Net weight over 999999                 | Di+ 12 |                                     |
| DILJ  | or less than -999999                   | DILIS  |                                     |
| Bit 6 |                                        | Bit 14 |                                     |
| Bit 7 | Gross weight negative sign             | Bit 15 | Load cells references not connected |

Refer to the section of the specific fieldbus to identify the position of the Status Register among the data exchanged at the instrument output.

CC-LINK INTERFACE

The CC-Link protocol provides for the Status Register only when the instrument is in a four-station configuration and the values of the divisions between the data exchanged at the instrument output are enabled (see section **READING DIVISIONS WITH SIGN OF EACH WEIGHTING CHANNEL**).

### **INSTRUMENT STATUS (IS)**

This register is used for the LOAD program only.

| 0  | Instrument in idle condition (weight displaying) | 13 | SLAUE alarm             |
|----|--------------------------------------------------|----|-------------------------|
| 1  | Batching not possible/programming mode           | 14 | ENPLY alarm             |
| 2  | Batching phase                                   | 15 | <b>NASFO</b> r alarm    |
| 3  | Waiting phase                                    | 16 | alarm                   |
| 4  | Cycle end phase                                  | 17 | EAFEP alarm             |
| 5  | Batching paused                                  | 18 | LOAd alarm              |
| 6  | UnLOAd alarm                                     | 19 | PAr5Er alarm            |
| 7  | FALL alarm                                       | 20 |                         |
| 8  | EOL alarm                                        | 21 |                         |
| 9  |                                                  | 22 |                         |
| 10 | Er UEI G alarm                                   | 23 |                         |
| 11 |                                                  | 24 | Temporary message EDEAL |
| 12 |                                                  |    |                         |

### INPUTS (INS) AND OUTPUTS (OUTS) STATUS

### DIGITAL INPUTS STATUS (INS)

| Bit 0 | INPUT 1 status |
|-------|----------------|
| Bit 1 | INPUT 2 status |
| Bit 2 |                |
| Bit 3 |                |
| Bit 4 |                |
| Bit 5 |                |
| Bit 6 |                |
| Bit 7 |                |
|       |                |

### **DIGITAL OUTPUTS STATUS (OUTS)**

| Bit 0                                          | OUTPUT 1 status |  |
|------------------------------------------------|-----------------|--|
| Bit 1                                          | OUTPUT 2 status |  |
| Bit 2                                          | OUTPUT 3 status |  |
| Bit 3                                          |                 |  |
| Bit 4                                          |                 |  |
| Bit 5                                          |                 |  |
| Bit 6                                          |                 |  |
| Bit 7                                          |                 |  |
| Bit=1: output is closed; Bit=0: output is open |                 |  |

Bit=1: high input; Bit=0: low input

### **DIGITAL OUTPUTS COMMAND (CMDOUT)**

This register is used for the BASE program only; it allows to control the outputs set to *PLE* mode (see section **OUTPUTS AND INPUTS CONFIGURATION (BASE program)**).

| Bit 0 | OUTPUT 1 status |
|-------|-----------------|
| Bit 1 | OUTPUT 2 status |
| Bit 2 | OUTPUT 3 status |
| Bit 3 |                 |
| Bit 4 |                 |
| Bit 5 |                 |
| Bit 6 |                 |
| Bit 7 |                 |

| Bit 8  |               |
|--------|---------------|
| Bit 9  |               |
| Bit 10 |               |
| Bit 11 |               |
| Bit 12 |               |
| Bit 13 |               |
| Bit 14 |               |
| Bit 15 | Force outputs |
|        |               |

Bit=1: output is closed; Bit=0: output is open



Setting bit 15 to 1 on the PLC, the master takes control of all the outputs, whatever their setting.

### ERROR CODE (ERC) – AUXILIARY ERROR CODE (AERC)

These registers allow you to read the error codes (see section ALARMS MANAGEMENT).

### EXECUTION CODE COMMAND (EXC) – AUXILIARY EXECUTION CODE COMMAND (AEXC)

These registers allow you to read the execution status of the commands sent to the CMDR (see section **COMMAND EXECUTION STATUS**).

### **COMMAND REGISTER (CMDR)**

The commands are sent to the instrument through this register.

### COMMAND NUMBER (CMDN)

The last command sent to the instrument is read through this register.

### SETPOINT (SPn) –HYSTERESIS (HYSn)

These registers allow you to manage the setpoint and hysteresis values (see section SETPOINT PROGRAMMING (BASE program)).

### DIVISIONS AND UNITS OF MEASURE (DU)

This register contains the current setting of the divisions and of the units of measure (see sections **DIVISION** and **SETTING UNITS OF MEASURE**).

| H byte          | L byte   |
|-----------------|----------|
| Unit of measure | Division |

### **DISPLAY COEFFICIENT (COF)**

This register allows you to set the display coefficient (see section **DISPLAY COEFFICIENT (BASE program)**).

### SAMPLE WEIGHT FOR INSTRUMENT CALIBRATION (CALW)

This register allows you to set the value of the sample weight (see section **REAL CALIBRATION** (WITH SAMPLE WEIGHTS)).

### ANALOG ZERO (ANA0) – ANALOG FULL SCALE (ANAFS)

These registers allow you to set the zero and full scale of the analog output (see section **ANALOG OUTPUT (TLB4 ONLY)**).

### PRESET TARE (PT)

This register allows you to set the preset tare value (see section **PRESET TARE**).

## SET (SET) – PRESET (PSET) – FALL (FALL) – TOLERANCE (TOLL) – MAXIMUM (MAX) – MINIMUM (MIN)

These registers are used only for the LOAD program and allow you to set the values of the main batching parameters.

### COMMAND EXECUTION STATUS

| EXC               | AEXC                |                                                    |  |  |
|-------------------|---------------------|----------------------------------------------------|--|--|
| Execution code    | Auxiliary execution | Description                                        |  |  |
| command           | code command        |                                                    |  |  |
| Command code sent | 0                   | Evenution completed evenepotelly                   |  |  |
| to CMDR           | U                   |                                                    |  |  |
| 1                 | 0                   | Running                                            |  |  |
| -2                | 0                   | The limits allowed for the parameter have been     |  |  |
|                   | 1                   | Sample weight equal to zero                        |  |  |
|                   | 2                   | Maximum number of calibration points reached       |  |  |
|                   | ζ                   | Sample weight already used in the surrent          |  |  |
|                   | 3                   | Sample weight alleady used in the current          |  |  |
|                   | 4                   |                                                    |  |  |
|                   |                     | Number of active channels other than one: This     |  |  |
|                   |                     | filtering level cannot be selected                 |  |  |
|                   | 5                   | No active channels                                 |  |  |
|                   | 6                   | Invalid function selected                          |  |  |
|                   | 7                   | Equalization disabled                              |  |  |
|                   | 8                   | Slow set, function not available                   |  |  |
| -3                | 9                   | The current load cell has already been equalized   |  |  |
| (execution error) | 10                  | Preset tare equal to zero                          |  |  |
|                   | 11                  | Semiautomatic tare active: preset tare not allowed |  |  |
|                   | 12                  | Gross weight equal to zero                         |  |  |
|                   | 14                  | Set value less than or equal to the Preset value   |  |  |
|                   | 15                  | Preset value greater than the Set value            |  |  |
|                   | 16                  | Incorrect requested configuration                  |  |  |
|                   | 17                  | Invalid output index                               |  |  |
|                   | 18                  | Invalid channel index                              |  |  |
|                   | 01                  | Semiautomatic tare active: semiautomatic zero      |  |  |
|                   | Ζ1                  | not allowed                                        |  |  |
|                   | 22                  | Weight greater than the value of parameter D 5EL   |  |  |
| Λ                 | 0                   | Qualified access required for parameter            |  |  |
| -4                | U                   | modification                                       |  |  |
| -5                | 0                   | Command not available in the current configuration |  |  |

- Read the execution code command in EXC
- Read the auxiliary execution code command in AEXC

PROFIBUS-DP, GENERIC, CC-LINK INTERFACES

- Read EXC in the two H byte of R1
- Read AEXC in the two L byte of R1



Command execution codes are expressed through 4-byte numbers in which the two H byte represent EXC and the two L byte represent AEXC.

Example: content of R1 when prompted to enter a calibration point when all available points are already used

|             | H (2 byte) | L (2 byte) | Total      |
|-------------|------------|------------|------------|
| Hexadecimal | 0xFFFD     | 0x0002     | 0xFFFD0002 |
| Decimal     | -3         | 2          | -196606    |

### MODBUS-RTU

The MODBUS-RTU protocol allows the management of the reading and writing of the following registries according to the specifications found on the reference document for this **Modicon PI-MBUS-300** standard.

To select the MODBUS-RTU communication see section **SERIAL COMMUNICATION SETTING** in instrument manual.

Check if the *master* MODBUS-RTU in use (or the development tool) requires the disclosure of registers based on 40001 or 0. In the first case the registers numbering corresponds to the one in the table; in the second case the register must be determined as the value in the table minus 40001. E.g.: the register 40028 shall be reported as 27 (= 40028-40001).

Certain data, when specifically indicated, will be written directly in the EEPROM type memory. This memory has a limited number of writing operations (100000), therefore it is necessary to pay particular attention to not execute useless operations on said locations. The instrument in any case makes sure that no writing occurs if the value to be memorised is equal to the value in memory.

The numerical data found below are expressed in decimal notation; if the prefix 0x is entered the notation will be hexadecimal.

### **MODBUS-RTU DATA FORMAT**

The data received and transmitted by way of the MODBUS-RTU protocol have the following characteristics:

- 1 start bit
- 8 bit of data, least significant bit sent first
- Settable parity bit
- Settable stop bit

### **FUNCTIONS SUPPORTED IN MODBUS**

Among the commands available in the MODBUS-RTU protocol, only the following are utilised for management of communication with the instruments; other commands could be incorrectly interpreted and generate errors or blocks of the system:

| FUNCTIONS | DESCRIPTION                                          |
|-----------|------------------------------------------------------|
| 03 (0x03) | READ HOLDING REGISTER (READ PROGRAMMABLE REGISTERS)  |
| 16 (0x10) | PRESET MULTIPLE REGISTERS (WRITE MULTIPLE REGISTERS) |

Interrogation frequency is linked to the communication speed set (the instrument stands by for at least 3 bytes before starting calculations an eventual response to the interrogation query). The *dELRY* parameter present in section **SERIAL COMMUNICATION SETTING** in instrument manual, allows the instrument to respond with a further delay and this directly influences the number of interrogations possible in the unit of time.

For additional information on this protocol refer to the general technical specifications PI\_MBUS\_300.

In general queries and answers toward and from one slave instrument are composed as follows:

### FUNCTION 3: Read holding registers (READ PROGRAMMABLE REGISTERS)

| QL | IERY |
|----|------|
|----|------|

| Address | Function | 1st register address | No. registers | 2 byte |
|---------|----------|----------------------|---------------|--------|
| А       | 0x03     | 0x0000               | 0x0002        | CRC    |

Tot. byte=8

RESPONSE

| Address | Function | No. bytes | 1st register | 2nd register | 2 byte |
|---------|----------|-----------|--------------|--------------|--------|
| А       | 0x03     | 0x04      | 0x0064       | 0x00C8       | CRC    |

Tot. byte=3+2\*No. registers+2

where: No. registers ..... number of Modbus registers to write beginning from the address no. 1 No. byte ...... number of bytes of the following data

### FUNCTION 16: Preset multiple registers (WRITE MULTIPLE REGISTERS)

QUERY

| Address | Function | 1st reg. add. | No. reg. | No. bytes | Val.reg.1 | Val.reg.2 | 2 byte |
|---------|----------|---------------|----------|-----------|-----------|-----------|--------|
| А       | 0x10     | 0x0000        | 0x0002   | 0x04      | 0x0000    | 0x0000    | CRC    |

Tot. byte=7+2\*No. registers+2

#### RESPONSE

| Address | Function | 1st reg. address | No. reg. | 2 byte |
|---------|----------|------------------|----------|--------|
| А       | 0x10     | 0x0000           | 0x0002   | CRC    |

Tot. byte=8

where: No. registers ..... number of Modbus registers to read beginning from the address no. 1 No. byte ...... number of bytes of the following data Val.reg.1 ...... contents of the register beginning from the first

The response contains the number of registers modified beginning from the address no. 1.

### **COMMUNICATION ERROR MANAGEMENT**

The communication strings are controlled by way of the CRC (Cyclical Redundancy Check). In case of communication error the slave will not respond with any string. The master must consider a time-out for reception of the answer. If it does not receive an answer it deduces that there has been a communication error.

In the case of the string received correctly but not executable, the slave responds with an EXCEPTIONAL RESPONSE. The "Function" field is transmitted with the msb at 1.

#### EXCEPTIONAL RESPONSE

| Address | Function     | Code | 2 byte |
|---------|--------------|------|--------|
| А       | Funct + 0x80 |      | CRC    |

| CODE | DESCRIPTION                                                        |
|------|--------------------------------------------------------------------|
| 1    | ILLEGAL FUNCTION (the function is not valid or is not supported)   |
| 2    | ILLEGAL DATA ADDRESS (the specified data address is not available) |
| 3    | ILLEGAL DATA VALUE (the data received has an invalid value)        |

### LIST OF AVAILABLE REGISTERS

#### The MODBUS-RTU protocol implemented on this instrument can manage a maximum of 32 registers read and written in a single query or response.

R.....the register may only be read

W.....the register may only be written R/W .....the register may be both read and written

H.....high half of the DOUBLE WORD containing the number

L.....low half of the DOUBLE WORD containing the number

| Register | Description                    | ABBR       | Saving in EPROM   | Access |
|----------|--------------------------------|------------|-------------------|--------|
| 40001    | Firmware version               | -          | -                 | R      |
| 40002    | Instrument type                | -          | -                 | R      |
| 40003    | Year of manufacture            | -          | -                 | R      |
| 40004    | Serial number                  | -          | -                 | R      |
| 40005    | Program type                   | -          | -                 | R      |
| 40006    | COMMAND REGISTER               | CMDR       | NO                | R/W    |
| 40007    | STATUS REGISTER                | SR1        | -                 | R      |
| 40008    | GROSS WEIGHT H                 | CW         | -                 | R      |
| 40009    | GROSS WEIGHT L                 | Gw         | -                 | R      |
| 40010    | NET WEIGHT H                   |            | -                 | R      |
| 40011    | NET WEIGHT L                   |            | -                 | R      |
| 40012    | PEAK WEIGHT H                  | D\\/       | -                 | R      |
| 40013    | PEAK WEIGHT L                  | IVV        | -                 | R      |
| 40014    | Divisions and Units of measure | DU         | -                 | R      |
| 40015    | Coefficient H                  | COF        | -                 | R      |
| 40016    | Coefficient L                  | 001        | -                 | R      |
| 40017    | INPUTS                         | INS        | -                 | R      |
| 40018    | OUTPUTS                        | OUTS       | NO                | R/W    |
| 40019    | SETPOINT 1 H                   | SP1        |                   | R/W    |
| 40020    | SETPOINT 1 L                   |            |                   | R/W    |
| 40021    | SETPOINT 2 H                   | <u> </u>   |                   | R/W    |
| 40022    | SETPOINT 2 L                   | 012        | -                 | R/W    |
| 40023    | SETPOINT 3 H                   | <b>CD3</b> | Only after        | R/W    |
| 40024    | SETPOINT 3 L                   | 010        | command 99 of the | R/W    |
| 40039    | HYSTERESIS 1 H                 | <u> </u>   | Command Register  | R/W    |
| 40040    | HYSTERESIS 1 L                 | 11101      |                   | R/W    |
| 40041    | HYSTERESIS 2 H                 | <u> </u>   |                   | R/W    |
| 40042    | HYSTERESIS 2 L                 | 111.02     |                   | R/W    |
| 40043    | HYSTERESIS 3 H                 | — нусз     |                   | R/W    |
| 40044    | HYSTERESIS 3 L                 | 11100      |                   | R/W    |
| 40050    | INSTRUMENT STATUS              | IS         | NO                | R      |

| 40051 | REGISTER 1                                                          |        |                  | R/W |
|-------|---------------------------------------------------------------------|--------|------------------|-----|
| 40052 | REGISTER 2                                                          | R1/W1* |                  | R/W |
| 40053 | REGISTER 3                                                          |        |                  | R/W |
| 40054 | REGISTER 4                                                          |        |                  | R/W |
| 40055 | REGISTER 5                                                          |        |                  | R/W |
| 40056 | REGISTER 6                                                          |        |                  | R/W |
| 40057 | REGISTER 7                                                          |        | NO               | R/W |
| 40058 | REGISTER 8                                                          |        | NO               | R/W |
| 40059 | REGISTER 9                                                          |        |                  | R/W |
| 40060 | REGISTER 10                                                         |        |                  | R/W |
| 40061 | REGISTER 11                                                         |        |                  | R/W |
| 40062 | REGISTER 12                                                         | AEXC   |                  | R/W |
| 40063 | REGISTER 13                                                         |        |                  | R/W |
| 40064 | REGISTER 14                                                         | EXC    |                  | R/W |
| 40065 | Sample weight for instrument calibration H                          | CALW   | Use with command | R/W |
| 40066 | Sample weight for instrument calibration L                          | UALW   | Command Register | R/W |
| 40067 | Weight value corresponding to ZERO of the analog output H           |        |                  | R/W |
| 40068 | Weight value corresponding to ZERO of the analog output L           | ANAU   | VEQ              | R/W |
| 40069 | Weight value corresponding to the full scale of the analog output H |        | TE3              | R/W |
| 40070 | Weight value corresponding to the full scale of the analog output L | ANAFO  |                  | R/W |
| 40073 | Preset tare H                                                       | рт     | Use with command | R/W |
|       |                                                                     |        |                  |     |

\*) in this document, reference is made to R1 for access to the register in reading and W1 for access to the register in writing.

### **COMMUNICATION EXAMPLES**

The numerical data below are expressed in hexadecimal notation with prefix h.

### EXAMPLE 1

Command for multiple writing of registers (command 16, h10 hexadecimal): Assuming that we wish to write the value 0 to the register 40017 and the value 2000 to the register 40018, the string to generate must be:

#### h01 h10 h00 h10 h00 h02 h04 h00 h00 h07 hD0 hF1 h0F

The instrument will respond with the string:

#### h01 h10 h00 h10 h00 h02 h40 h0D

| Query field name                | hex | Response field name             | hex |
|---------------------------------|-----|---------------------------------|-----|
| Instrument address              | h01 | Instrument address              | h01 |
| Function                        | h10 | Function                        | h10 |
| Address of the first register H | h00 | Address of the first register H | h00 |
| Address of the first register L | h10 | Address of the first register L | h10 |
| Number of registers H           | h00 | Number of registers H           | h00 |
| Number of registers L           | h02 | Number of registers L           | h02 |
| Byte count                      | h04 | CRC16 L                         | h40 |
| Datum 1 H                       | h00 | CRC16 H                         | h0D |
| Datum 1 L                       | h00 |                                 |     |
| Datum 2 H                       | h07 |                                 |     |
| Datum 2 L                       | hD0 |                                 |     |
| CRC16 L                         | hF1 |                                 |     |
| CRC16 H                         | h0F |                                 |     |

### EXAMPLE 2

Command for multiple writing of registers (command 16, h10 hexadecimal):

Assuming that we wish to write two setpoint values on the instrument, at 2000 (setpoint 1: 40019-40020) and 3000 (setpoint 2: 40021-40022) respectively, the string must be sent:

### h01 h10 h00 h12 h00 h04 h08 h00 h00 h07 hD0 h00 h00 h0B hB8 h49 h65

The instrument will respond with the string:

### h01 h10 h00 h12 h00 h04 h61 hCF

| Query field name                | hex | Response field name             | hex |
|---------------------------------|-----|---------------------------------|-----|
| Instrument address              | h01 | Instrument address              | h01 |
| Function                        | h10 | Function                        | h10 |
| Address of the first register H | h00 | Address of the first register H | h00 |
| Address of the first register L | h12 | Address of the first register L | h12 |
| Number of registers H           | h00 | Number of registers H           | h00 |
| Number of registers L           | h04 | Number of registers L           | h04 |
| Byte count                      | h08 | CRC16 L                         | h61 |
| Datum 1 H                       | h00 | CRC16 H                         | hCF |
| Datum 1 L                       | h00 |                                 |     |
| Datum 2 H                       | h07 |                                 |     |
| Datum 2 L                       | hD0 |                                 |     |
| Datum 3 H                       | h00 |                                 |     |
| Datum 3 L                       | h00 |                                 |     |
| Datum 4 H                       | h0B |                                 |     |
| Datum 4 L                       | hB8 |                                 |     |
| CRC16 L                         | h49 |                                 |     |
| CRC16 H                         | h65 |                                 |     |

### EXAMPLE 3

Multiple commands reading for registers (command 3, h03 hexadecimal):

Assuming that we wish to read the gross weight value (in the example 4000) and net weight value (in the example 3000), reading from address 40008 to address 40011 must be performed by sending the following string:

#### h01 h03 h00 h07 h00 h04 hF5 hC8

The instrument will respond with the string:

#### h01 h03 h08 h00 h00 h0F hA0 h00 h00 h0B hB8 h12 h73

| Query field name                | hex | Response field name | hex |
|---------------------------------|-----|---------------------|-----|
| Instrument address              | h01 | Instrument address  | h01 |
| Function                        | h03 | Function            | h03 |
| Address of the first register H | h00 | Byte count          | h08 |
| Address of the first register L | h07 | Datum 1 H           | h00 |
| Number of registers H           | h00 | Datum 1 L           | h00 |
| Number of registers L           | h04 | Datum 2 H           | h0F |
| CRC16 L                         | hF5 | Datum 2 L           | hA0 |
| CRC16 H                         | hC8 | Datum 3 H           | h00 |
|                                 |     | Datum 3 L           | h00 |
|                                 |     | Datum 4 H           | h0B |
|                                 |     | Datum 4 L           | hB8 |
|                                 |     | CRC16 L             | h12 |
|                                 |     | CRC16 H             | h73 |

For additional examples regarding the generation of correct control characters (CRC16) refer to the manual **Modicon PI-MBUS-300**.

### CANOPEN

### **TECHNICAL SPECIFICATIONS AND CONNECTIONS**

| Baud rate [kb/s] | 10, 20, 50, 125, 250, 500, 800, 1000                  |  |  |  |  |
|------------------|-------------------------------------------------------|--|--|--|--|
| Node ID          | 1÷127                                                 |  |  |  |  |
| Terminals legend | 47CAN GND<br>46CAN L<br>45CAN SHLD<br>44CAN H<br>43NC |  |  |  |  |

The instrument features a CANopen port that allows to exchange the weight and the main parameters with a CANopen *master*.

### **INSTRUMENT SETUP**

### $\clubsuit + \bigstar \rightarrow \texttt{CAnOPn}$

- *Rddr* (default: 1): set the instrument address in the CANopen network
- **BRUd** (default: 10 kb/s): set the instrument baud rate in the CANopen network
- SURP (default: n0): it allows to select the reading/writing of the byte in LITTLE-ENDIAN or BIG-ENDIAN mode
  - **JES**: BIG ENDIAN
  - nD: LITTLE ENDIAN



In order to apply the changes, press 🔀 until the display shows [AnDPn.

### PC/PLC SETUP

The instrument works as *slave* in a synchronous CANopen network (activate the SYNC object on the network master).

Load the eds file attached to the instrument to the CANopen *master* development system. When configuring CANopen Guard Time and Lifetime Factor, set values 100 ms and 4. The data exchanged by the instrument are:

| Output Data from<br>instrument (Reading) | ABBR | Index | Sub-Index | Data type  | Addresses     |
|------------------------------------------|------|-------|-----------|------------|---------------|
| Gross Weight [4 byte]                    | GW   | 4100  | 01        | UNSIGNED32 | 0x0000-0x0003 |
| Net Weight [4 byte]                      | NW   | 4100  | 02        | UNSIGNED32 | 0x0004-0x0007 |
| Exchange Register [4 byte]               | R1   | 4101  | 01        | UNSIGNED32 | 0x0008-0x000B |
| Status Register [2 byte]                 | SR1  | 4101  | 02        | UNSIGNED16 | 0x000C-0x000D |
| Digital Inputs status [1 byte]           | INS  | 4101  | 03        | UNSIGNED8  | 0x000E        |
| Digital Outputs status [1 byte]          | OUTS | 4101  | 04        | UNSIGNED8  | 0x000F        |

| Input Data to instrument<br>(Writing) | ABBR   | Index | Sub-Index | Data type  | Addresses     |
|---------------------------------------|--------|-------|-----------|------------|---------------|
| Command Register [2 byte]             | CMDR   | 4000  | 01        | UNSIGNED16 | 0x0000-0x0001 |
| Digital Outputs Command [2 byte]      | CMDOUT | 4000  | 02        | UNSIGNED16 | 0x0002-0x0003 |
| Exchange Register [4 byte]            | W1     | 4000  | 03        | UNSIGNED32 | 0x0004-0x0007 |

### DEVICENET

### **TECHNICAL SPECIFICATIONS AND CONNECTIONS**

| Baud rate [kb/s] | 125, 250, 500 |
|------------------|---------------|
| Addresses        | 1÷63          |
|                  | 47 CAN V -    |
| Terminals legend | 46CAN L       |
|                  | 45CAN SHLD    |
|                  | 44CAN H       |
|                  | 43CAN V +     |

It is necessary to activate the termination resistance on the two devices located at the ends of the network closing the jumper.

The instrument features a DeviceNet port that allows to exchange the weight and the main parameters with a DeviceNet *master*.

### **INSTRUMENT SETUP**

### $+ X \rightarrow dEUnEt$

- Rddr (default: 1): set the instrument address in the DeviceNet network
- **bRUd** (default: 125 kb/s): set the instrument baud rate in the DeviceNet network
- SURP (default: n0): it allows to select the reading/writing of the byte in LITTLE-ENDIAN or BIG-ENDIAN mode
  - **YES**: BIG ENDIAN
  - n0: LITTLE ENDIAN



In order to apply the changes, press 🔀 until the display shows dEUnEL.

### PC/PLC SETUP

The instrument works as *slave* in a DeviceNet network.

Load the eds file attached to the instrument to the DeviceNet *master* development system. The data exchanged by the instrument are:

| Output Data from instrument (Reading) | ABBR | Addresses     |
|---------------------------------------|------|---------------|
| Gross Weight [4 byte]                 | GW   | 0x0000-0x0003 |
| Net Weight [4 byte]                   | NW   | 0x0004-0x0007 |
| Exchange Register [4 byte]            | R1   | 0x0008-0x000B |
| Status Register [2 byte]              | SR1  | 0x000C-0x000D |
| Digital Inputs status [1 byte]        | INS  | 0x000E        |
| Digital Outputs status [1 byte]       | OUTS | 0x000F        |

| Input Data to instrument (Writing) | ABBR   | Addresses     |
|------------------------------------|--------|---------------|
| Command Register [2 byte]          | CMDR   | 0x0000-0x0001 |
| Digital Outputs Command [2 byte]   | CMDOUT | 0x0002-0x0003 |
| Exchange Register [4 byte]         | W1     | 0x0004-0x0007 |

### **CC-LINK**

### **TECHNICAL SPECIFICATIONS AND CONNECTIONS**

| Baud rate              | 156 k, 625 k, 2500 k, 5 M, 10 M |
|------------------------|---------------------------------|
| Addresses              | 1÷64                            |
| Stations               | 1, 2, 4                         |
| Status LED indications | offtimeout/reset                |
| (red)                  |                                 |
|                        | 10CCL DA                        |
|                        | 11CCL DB                        |
| Terminals legend       | 12CCL DG                        |
|                        | 13CCL SLD                       |
|                        | 14CCL FG                        |

To activate the termination resistance of CC-LINK network close the related jumper.

The instrument features a CC-LINK port that allows to exchange the weight and the main parameters with a CC-LINK *master*.

### **INSTRUMENT SETUP**

### $\textcircled{+} \times \rightarrow \texttt{[LI nH}$

- Rddr (default: 1): set the instrument address in the CC-LINK network
- **bRUd** (default: 156 kb/s): set the instrument baud rate in the CC-LINK network
- **nUNSER** (default: 4): set the number of stations of the instrument on the CC-LINK network



In order to apply the changes, press  $\mathbf{X}$  until the display shows  $\mathbf{ELI} \cap \mathbf{H}$ .

### PC/PLC SETUP

The instrument works as *Remote Device Station* in a CC-LINK network and occupies 1, 2 or 4 stations. Load the csp file attached to the instrument to the CC-LINK *master* development system.

The data exchanged by the instrument varies according to the number of stations set and is divided into: - registers managed by bit: RX/RY

- registers managed by word: RWr/RWw

### <u>RX/RY</u>

### **ONE STATION**

| RX                                                            |            |                                                                               |            |  |
|---------------------------------------------------------------|------------|-------------------------------------------------------------------------------|------------|--|
| Output Data                                                   | Device No. | Input Data                                                                    | Device No. |  |
| from instrument (Reading)                                     | bit        | to instrument (Writing)                                                       | bit        |  |
| Response to Storage request for batching data <sup>[18]</sup> | RXn0       | Storage request for batching data <sup>[18]</sup>                             | RYn0       |  |
| Error <sup>[31]</sup>                                         | RXn1       |                                                                               | RYn1       |  |
| Response to Generic Command Execution Request <sup>[1]</sup>  | RXn2       | Generic Command Execution<br>Request <sup>[1]</sup>                           | RYn2       |  |
| Writing/Reading Response <sup>[2]</sup>                       | RXn3       | Writing/Reading Selection <sup>[2]</sup>                                      | RYn3       |  |
| Net display mode <sup>[9]</sup>                               | RXn4       | SEMI-AUTOMATIC ZERO <sup>[15]</sup>                                           | RYn4       |  |
| -                                                             | RXn5       | SEMI-AUTOMATIC TARE<br>enabling (net weight<br>displaying) <sup>[16]</sup>    | RYn5       |  |
| Correct operation of the instrument <sup>[3]</sup>            | RXn6       | SEMI-AUTOMATIC TARE<br>disabling (gross weight<br>displaying) <sup>[17]</sup> | RYn6       |  |
| SET contact <sup>[19]</sup>                                   | RXn7       | Batching start <sup>[24]</sup>                                                | RYn7       |  |
| PRESET contact <sup>[20]</sup>                                | RXn8       | Batching pause <sup>[25]</sup>                                                | RYn8       |  |
| Tapping function <sup>[21]</sup>                              | RXn9       | Batching resume <sup>[26]</sup>                                               | RYn9       |  |
| Tolerance <sup>[22]</sup>                                     | RXnA       | Batching stop <sup>[27]</sup>                                                 | RYnA       |  |
| Gross weight negative sign <sup>[5]</sup>                     | RXnB       | Accept batching alarm <sup>[28]</sup>                                         | RYnB       |  |
| Net weight negative sign <sup>[5]</sup>                       | RXnC       | Ignore ER-EP <sup>[29]</sup>                                                  | RYnC       |  |
| Cycle end <sup>[23]</sup>                                     | RXnD       | Ignore EDL <sup>[30]</sup>                                                    | RYnD       |  |
| Weight stability <sup>[7]</sup>                               | RXnE       | -                                                                             | RYnE       |  |
| Weight within ±¼ of a division around ZERO <sup>[6]</sup>     | RXnF       | -                                                                             | RYnF       |  |
| -                                                             | RX(n+1)0   | -                                                                             | RY(n+1)0   |  |
| -                                                             | RX(n+1)1   | -                                                                             | RY(n+1)1   |  |
| -                                                             | RX(n+1)2   | -                                                                             | RY(n+1)2   |  |
| -                                                             | RX(n+1)3   | -                                                                             | RY(n+1)3   |  |
| -                                                             | RX(n+1)4   | -                                                                             | RY(n+1)4   |  |
| -                                                             | RX(n+1)5   | -                                                                             | RY(n+1)5   |  |

| -                            | RX(n+1)6 | - | RY(n+1)6 |
|------------------------------|----------|---|----------|
| -                            | RX(n+1)7 | - | RY(n+1)7 |
| -                            | RX(n+1)8 | - | RY(n+1)8 |
| -                            | RX(n+1)9 | - | RY(n+1)9 |
| -                            | RX(n+1)A | - | RY(n+1)A |
| System ready <sup>[14]</sup> | RX(n+1)B | - | RY(n+1)B |
| -                            | RX(n+1)C | - | RY(n+1)C |
| -                            | RX(n+1)D | - | RY(n+1)D |
| -                            | RX(n+1)E | - | RY(n+1)E |
| -                            | RX(n+1)F | - | RY(n+1)F |

### **TWO STATIONS**

| RX                                                            |             | RY                                                                            |             |  |
|---------------------------------------------------------------|-------------|-------------------------------------------------------------------------------|-------------|--|
| Output Data                                                   | Device No.  | Input Data                                                                    | Device No.  |  |
| from instrument (Reading)                                     | bit         | to instrument (Writing)                                                       | bit         |  |
| Response to Storage request for batching data <sup>[18]</sup> | RXn0        | Storage request for batching data <sup>[18]</sup>                             | RYn0        |  |
| -                                                             | RXn1        |                                                                               | RYn1        |  |
| Response to Generic Command Execution Request <sup>[1]</sup>  | RXn2        | Generic Command Execution<br>Request <sup>[1]</sup>                           | RYn2        |  |
| Writing/Reading Response <sup>[2]</sup>                       | RXn3        | Writing/Reading Selection <sup>[2]</sup>                                      | RYn3        |  |
|                                                               | RXn4        |                                                                               | RYn4        |  |
| -                                                             | RXn5        | -                                                                             | RYn5        |  |
| Correct operation of the instrument <sup>[3]</sup>            | RXn6        | -                                                                             | RYn6        |  |
| -                                                             | RXn7        | -                                                                             | RYn7        |  |
| Decimal point 1 <sup>[4]</sup>                                | RXn8        | -                                                                             | RYn8        |  |
| Decimal point 2 <sup>[4]</sup>                                | RXn9        | -                                                                             | RYn9        |  |
| Decimal point 4 <sup>[4]</sup>                                | RXnA        | -                                                                             | RYnA        |  |
| Gross weight negative sign <sup>[5]</sup>                     | RXnB        | -                                                                             | RYnB        |  |
| Net weight negative sign <sup>[5]</sup>                       | RXnC        |                                                                               | RYnC        |  |
|                                                               | RXnD - RXnF |                                                                               | RYnD - RYnF |  |
| Weight within ±¼ of a division around ZERO <sup>[6]</sup>     | RX(n+1)0    | SEMI-AUTOMATIC ZERO <sup>[15]</sup>                                           | RY(n+1)0    |  |
| SET contact <sup>[19]</sup>                                   | RX(n+1)1    |                                                                               | RY(n+1)1    |  |
| PRESET contact <sup>[20]</sup>                                | RX(n+1)2    | SEMI-AUTOMATIC TARE<br>enabling (net weight<br>displaying) <sup>[16]</sup>    | RY(n+1)2    |  |
| Tapping function <sup>[21]</sup>                              | RX(n+1)3    | SEMI-AUTOMATIC TARE<br>disabling (gross weight<br>displaying) <sup>[17]</sup> | RY(n+1)3    |  |
| Tolerance <sup>[22]</sup>                                     | RX(n+1)4    |                                                                               | RY(n+1)4    |  |
| -                                                             | RX(n+1)5    |                                                                               | RY(n+1)5    |  |

| -                                                               | RX(n+1)6   |                                       | RY(n+1)6   |
|-----------------------------------------------------------------|------------|---------------------------------------|------------|
| Weight stability <sup>[7]</sup>                                 | RX(n+1)7   | Batching start <sup>[24]</sup>        | RY(n+1)7   |
| Cycle end <sup>[23]</sup>                                       | RX(n+1)8   | Batching pause <sup>[25]</sup>        | RY(n+1)8   |
| Maximum gross weight<br>exceeded by 9 divisions <sup>[8]</sup>  | RX(n+1)9   | Batching resume <sup>[26]</sup>       | RY(n+1)9   |
|                                                                 | RX(n+1)A   | Batching stop <sup>[27]</sup>         | RY(n+1)A   |
|                                                                 | RX(n+1)B   | Accept batching alarm <sup>[28]</sup> | RY(n+1)B   |
|                                                                 | RX(n+1)C   | Ignore EALES [29]                     | RY(n+1)C   |
|                                                                 | RX(n+1)D   | Ignore EOL <sup>[30]</sup>            | RY(n+1)D   |
|                                                                 | RX(n+1)E   |                                       | RY(n+1)E   |
|                                                                 | RX(n+1)F   |                                       | RY(n+1)F   |
| Net display mode <sup>[9]</sup>                                 | RX(n+2)0   | -                                     | RY(n+2)0   |
| Load cells reference not connected <sup>[10]</sup>              | RX(n+2)1   | -                                     | RY(n+2)1   |
| AD convertor malfunction <sup>[11]</sup>                        | RX(n+2)2   | -                                     | RY(n+2)2   |
| Load cell error <sup>[12]</sup>                                 | RX(n+2)3   | -                                     | RY(n+2)3   |
| Net weight over the maximum displayable value <sup>[13]</sup>   | RX(n+2)4   | -                                     | RY(n+2)4   |
| Gross weight over the maximum displayable value <sup>[13]</sup> | RX(n+2)5   | -                                     | RY(n+2)5   |
|                                                                 | RX(n+2)6 - |                                       | RY(n+2)6 - |
| -                                                               | RX(n+3)A   | -                                     | RY(n+3)A   |
| System ready <sup>[14]</sup>                                    | RX(n+3)B   | -                                     | RY(n+3)B   |
| _                                                               | RX(n+3)C - |                                       | RY(n+3)C - |
|                                                                 | RX(n+3)F   |                                       | RY(n+3)F   |

### FOUR STATIONS

| RX                                                              |            | RY                                                  |            |  |
|-----------------------------------------------------------------|------------|-----------------------------------------------------|------------|--|
| Output Data                                                     | Device No. | Input Data                                          | Device No. |  |
| from instrument (Reading)                                       | bit        | to instrument (Writing)                             | bit        |  |
| Response to Storage request for batching data <sup>[18]</sup>   | RXn0       | Storage request for batching data <sup>[18]</sup>   | RYn0       |  |
| -                                                               | RXn1       |                                                     | RYn1       |  |
| Response to Generic Command<br>Execution Request <sup>[1]</sup> | RXn2       | Generic Command Execution<br>Request <sup>[1]</sup> | RYn2       |  |
| Writing/Reading Response <sup>[2]</sup>                         | RXn3       | Writing/Reading Selection <sup>[2]</sup>            | RYn3       |  |
|                                                                 | RXn4       |                                                     | RYn4       |  |
| -                                                               | RXn5       | -                                                   | RYn5       |  |
| Correct operation of the instrument <sup>[3]</sup>              | RXn6       | -                                                   | RYn6       |  |
| -                                                               | RXn7       | -                                                   | RYn7       |  |
| Decimal point 1 <sup>[4]</sup>                                  | RXn8       | -                                                   | RYn8       |  |
| Decimal point 2 <sup>[4]</sup>                                  | RXn9       | -                                                   | RYn9       |  |
| Decimal point 4 <sup>[4]</sup>                                  | RXnA       | -                                                   | RYnA       |  |

| Gross weight negative sign <sup>[5]</sup>                       | RXnB                  | -                                                                             | RYnB            |
|-----------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|-----------------|
| Net weight negative sign <sup>[5]</sup>                         | RXnC                  |                                                                               | RYnC            |
|                                                                 | RXnD - RXnF           |                                                                               | RYnD - RYnF     |
| Weight within $\pm \frac{1}{4}$ of a division                   | RX(n+1)0              | SEMI-AUTOMATIC ZERO <sup>[15]</sup>                                           | RY(n+1)0        |
|                                                                 | $\nabla V(n \cdot 1)$ |                                                                               | $\nabla V(n+1)$ |
|                                                                 | RX(n+1)1              |                                                                               | RY(N+1)1        |
| PRESET contact <sup>[20]</sup>                                  | RX(n+1)2              | enabling (net weight<br>displaying) <sup>[16]</sup>                           | RY(n+1)2        |
| Tapping function <sup>[21]</sup>                                | RX(n+1)3              | SEMI-AUTOMATIC TARE<br>disabling (gross weight<br>displaying) <sup>[17]</sup> | RY(n+1)3        |
| Tolerance <sup>[22]</sup>                                       | RX(n+1)4              | · · · ·                                                                       | RY(n+1)4        |
| -                                                               | RX(n+1)5              |                                                                               | RY(n+1)5        |
| -                                                               | RX(n+1)6              |                                                                               | RY(n+1)6        |
| Weight stability <sup>[7]</sup>                                 | RX(n+1)7              | Batching start <sup>[24]</sup>                                                | RY(n+1)7        |
| Cycle end <sup>[23]</sup>                                       | RX(n+1)8              | Batching pause <sup>[25]</sup>                                                | RY(n+1)8        |
| Maximum gross weight<br>exceeded by 9 divisions <sup>[8]</sup>  | RX(n+1)9              | Batching resume <sup>[26]</sup>                                               | RY(n+1)9        |
|                                                                 | RX(n+1)A              | Batching stop <sup>[27]</sup>                                                 | RY(n+1)A        |
|                                                                 | RX(n+1)B              | Accept batching alarm <sup>[28]</sup>                                         | RY(n+1)B        |
|                                                                 | RX(n+1)C              |                                                                               | RY(n+1)C        |
|                                                                 | RX(n+1)D              | Ignore EOL <sup>[30]</sup>                                                    | RY(n+1)D        |
|                                                                 | RX(n+1)E              |                                                                               | RY(n+1)E        |
|                                                                 | RX(n+1)F              |                                                                               | RY(n+1)F        |
| Net display mode <sup>[9]</sup>                                 | RX(n+2)0              |                                                                               | RY(n+2)0        |
| Load cells reference not connected <sup>[10]</sup>              | RX(n+2)1              |                                                                               | RY(n+2)1        |
| AD convertor malfunction <sup>[11]</sup>                        | RX(n+2)2              |                                                                               | RY(n+2)2        |
| Load cell error <sup>[12]</sup>                                 | RX(n+2)3              |                                                                               | RY(n+2)3        |
| Net weight over the maximum displayable value <sup>[13]</sup>   | RX(n+2)4              |                                                                               | RY(n+2)4        |
| Gross weight over the maximum displayable value <sup>[13]</sup> | RX(n+2)5              |                                                                               | RY(n+2)6        |
|                                                                 | RX(n+2)6 -            |                                                                               | RY(n+2)5 -      |
|                                                                 | RX(n+6)F              |                                                                               | RY(n+6)F        |
| Reserved                                                        | RX(n+7)0 -            | Reserved                                                                      | RY(n+7)0 -      |
|                                                                 | RX(n+7)7              |                                                                               | RY(n+7)7        |
|                                                                 | RX(n+7)8              |                                                                               | RY(n+7)8        |
|                                                                 | RX(n+7)9              |                                                                               | RY(n+7)9        |
|                                                                 | RX(n+7)A              |                                                                               | RY(n+7)A        |
| System ready <sup>[14]</sup>                                    | RX(n+7)B              | Reserved                                                                      | RY(n+7)B        |
| Reserved                                                        | RX(n+7)C -            | Reserved                                                                      | RY(n+7)C -      |
|                                                                 | RX(n+7)F              |                                                                               | RY(n+7)F        |

### [1] Generic Command Execution Request

The request to execute a command must be sent via the RYn2 bit and checked via the RXn2 bit (see section **CER PROCEDURE**).

### [2] Writing/reading selection

Write in RYn3 how the command sent to CMDR should be executed:

0=writing

1=reading

RXn3 automatically assumes the value of RYn3 (echo of RYn3).

### [3] Correct operation of the instrument

Operating condition of the CC-Link instrument: if the bit changes state by alternating 1 and 0 once per second, the operation is correct.

### [4] Decimal point

Read RXn8, RXn9, RXnA to know the number of decimals of the weight value.

|      | bit  |      | Number      | Weight value   |
|------|------|------|-------------|----------------|
| RXnA | RXn9 | RXn8 | of decimals | representation |
| 0    | 0    | 0    | 0           | 000000         |
| 0    | 0    | 1    | 1           | 0.00000        |
| 0    | 1    | 0    | 2           | 0000.00        |
| 0    | 1    | 1    | 3           | 000.000        |
| 1    | 0    | 0    | 4           | 00.000         |

#### Example

| Weight value | Number      | bit  |      |      |
|--------------|-------------|------|------|------|
| weight value | of decimals | RXnA | RXn9 | RXn8 |
| 0100.52      | 2           | 0    | 1    | 0    |
| 001937       | 0           | 0    | 0    | 0    |
| 34.0612      | 4           | 1    | 0    | 0    |

### [5] Weight negative sign

0=the weight has a positive sign 1=the weight has a negative sign

### [6] Weight within $\pm \frac{1}{4}$ of a division around ZERO

0=il peso non è entro  $\pm \frac{1}{4}$  di divisione attorno allo ZERO

1=il peso è entro  $\pm \frac{1}{4}$  di divisione attorno allo ZERO

### [7] Weight stability

0= the weight is not stable

1= the weight is stable

### [8] Maximum gross weight exceeded by 9 divisions

0=the weight has not exceeded the maximum weight value of 9 divisions 1=the weight has exceeded the maximum weight value of 9 divisions

### [9] Net display mode

0=gross weight displaying 1=net weight displaying

### [10] Load cells reference not connected

0=load cell reference connected correctly 1=load cell reference not connected correctly

### [11] AD convertor malfunction

0=AD converter working properly 1=AD converter faulty

### [12] Load cell error

0=load cells functioning correctly 1=error relating to the load cells

### [13] Gross/net weight over the maximum displayable value

0=weight between 999999 and -999999 1= weight over 999999 or less than -999999

### [14] System ready

- 0 = system initialization in progress
- 1 = system initialization completed

### [15] SEMI-AUTOMATIC ZERO

Write 1 to enable the SEMI-AUTOMATIC ZERO.

### [16] SEMI-AUTOMATIC TARE enabling (net weight displaying)

Write 1 to enable the SEMI-AUTOMATIC TARE.

### [17] SEMI-AUTOMATIC TARE disabling (gross weight displaying)

Write 1 to disable the SEMI-AUTOMATIC TARE.

### [18] Storage request for batching data

The batching data storage request must be sent via the RYn0 bit and checked via the RXn0 bit (see section **BPSR PROCEDURE**).

### [19] SET contact

0=quantity of batched product greater than or equal to the SET FORMULA value 1=quantity of batched product lower than the SET FORMULA value

### [20] PRESET contact

0=quantity of batched product greater than or equal to the PRESET FORMULA value 1=quantity of batched product lower than the PRESET FORMULA value

### [21] Tapping function

0=tapping phase not active 1=tapping phase active

### [22] Tolerance

0=the weight is within the set tolerance value 1=the weight is outside the set tolerance value

### [23] Cycle end

0=cycle end phase not active 1=cycle end phase active

### [24] Batching start

Write 1 to start the batching cycle.

### [25] Batching pause

Write 1 to pause the batching cycle.

### [26] Batching resume

Write 1 to resume the batching.

### [27] Batching stop

Write 1 to stop the batching cycle.

### [28] Accept batching alarm

ENPEH, Eruei G, FALL, PArser alarms (see section ALARMS MANAGEMENT DURING THE BATCHING)

Write 1 to accept the batching alarm.

### [29] Ignore ER-EP

Write 1 to ignore the tare alarm.

### [30] Ignore EOL

Write 1 to ignore the tolerance alarm.

### [31] Error

0= no error detected 1= one or more errors detected (see sections ALARMS MANAGEMENT and COMMAND EXECUTION STATUS)

### RWw/RWr

### **ONE STATION**

|                                       | RWr  |                  |                 |
|---------------------------------------|------|------------------|-----------------|
| Output Data from instrument (Reading) | ABBR | Dimension (byte) | Addresses       |
| Net Weight                            | NW   | 4                | Wr0000 – Wr0001 |
| Exchange Register                     | R1   | 4                | Wr0002 – Wr0003 |
|                                       | RWw  |                  |                 |
| Input Data to instrument (Writing)    | ABBR | Dimension (byte) | Addresses       |
| Exchange Register                     | W1   | 4                | Ww0000 - Ww0001 |
| Command Register                      | CMDR | 2                | Ww0002          |
| -                                     |      | 2                | Ww0003          |

### **TWO STATIONS**

| RWr                                   |      |                  |                 |  |
|---------------------------------------|------|------------------|-----------------|--|
| Output Data from instrument (Reading) | ABBR | Dimension (byte) | Addresses       |  |
| Net Weight                            | NW   | 4                | Wr0000 – Wr0001 |  |
| Exchange Register                     | R1   | 4                | Wr0002 – Wr0003 |  |
| -                                     |      | 2                | Wr0004          |  |
| Command Number                        | CMDN | 2                | Wr0005          |  |
| Error Code                            | ERC  | 2                | Wr0006          |  |
| Auxiliary Error Code                  | AERC | 2                | Wr0007          |  |

|                                    | RWw  |                  |                 |
|------------------------------------|------|------------------|-----------------|
| Input Data to instrument (Writing) | ABBR | Dimension (byte) | Addresses       |
| -                                  |      | 10               | Ww0000 – Ww0004 |
| Exchange Register                  | W1   | 4                | Ww0005 – Ww0006 |
| Command Register                   | CMDR | 2                | Ww0007          |

### FOUR STATIONS

|                                       | RWr  |                  |                 |
|---------------------------------------|------|------------------|-----------------|
| Output Data from instrument (Reading) | ABBR | Dimension (byte) | Addresses       |
| Net Weight                            | NW   | 4                | Wr0000 – Wr0001 |
| Gross Weight                          | GW   | 4                | Wr0002 – Wr0003 |
| -                                     |      | 4                | Wr0004 – Wr0005 |
| Error Code                            | ERC  | 2                | Wr0006          |
| Auxiliary Error Code                  | AERC | 2                | Wr0007          |
| -                                     |      | 8                | Wr0008- Wr000B  |
| Exchange Register                     | R1   | 4                | Wr000C – Wr000D |
| Command Number                        | CMDN | 2                | Wr000E          |
| -                                     |      | 2                | Wr000F          |

| RWW                                |      |                  |                 |
|------------------------------------|------|------------------|-----------------|
| Input Data to instrument (Writing) | ABBR | Dimension (byte) | Addresses       |
| SET*                               | SET  | 4                | Ww0000 – Ww0001 |
| PRESET*                            | PSET | 4                | Ww0002 – Ww0003 |
| Fall*                              | FALL | 4                | Ww0004 – Ww0005 |
| Tolerance*                         | TOLL | 4                | Ww0006 – Ww0007 |
| Maximum*                           | MAX  | 4                | Ww0008 – Ww0009 |
| Minimum*                           | MIN  | 4                | Ww000A – Ww000B |
| Exchange Register                  | W1   | 4                | Ww000C – Ww000D |
| Command Register                   | CMDR | 2                | Ww000E          |
| -                                  |      | 2                | Ww000F          |

\* These registers allow you to set the values of the main batching parameters: to store them, see the **BPSR PROCEDURE** section.

### CER PROCEDURE

After writing a valid command code in CMDR, proceed as follows to execute the command:

- write 1 in RYn2 to send the command execution request
- read RXn2 to verify the execution of the command (1=executed, 0=not executed)
- if the command has been executed write 0 in RYn2
- RXn2 is automatically reset to 0 (echo of RYn2)

### **BPSR PROCEDURE**

After having filled in the set (SET), preset (PSET), fall (FALL), tolerance (TOLL), maximum weight (MAX), minimum weight (MIN) registers with the values to be stored, proceed as follows to simultaneously store the batching parameters:

- write 1 in RYn0 to send the request for storing the batching parameters
- read RXn0 to verify the execution of the command (1 = executed, 0 = not executed)
- if the command has been executed write 0 in RYn0
- RXn0 is automatically reset to 0 (echo of RYn0)



The BPSR procedure is performed (RXn0=1) only if all registers contain a valid value (see section **BATCHING** in instrument manual).

### ETHERNET TCP/IP

### **TECHNICAL SPECIFICATIONS**

| Port                     | RJ45 10Base-T or 100Base-TX (auto-detect)                                 |  |  |
|--------------------------|---------------------------------------------------------------------------|--|--|
| Link LED indications     | offEthernet link not established<br>amber10 Mb/s<br>green100 Mb/s         |  |  |
| Activity LED indications | offEthernet activity not detected<br>amberHalf Duplex<br>greenFull Duplex |  |  |

The instrument features an ethernet TCP/IP port that allows to exchange the weight and the main parameters in an ethernet network, for example with a PC.

### **INSTRUMENT SETUP**

### $\clubsuit + \bigstar \rightarrow \mathsf{EtHnEt}$

- I PRddr (default: 10.2.0.170): set instrument IP address
- **SUbnEL** (default: 255.255.255.0): set instrument Subnet Mask
- **GREURY** (default: 0.0.0.0): set Gateway address of Ethernet network
- *NDdE*: select communication protocol.
  - nDnE: it disables any type of communication (default).
  - *NodbUS*: MODBUS-RTU protocol; possible addresses: from 1 to 99.
  - **R5***LI* : ASCII bidirectional protocol; possible addresses: from 1 to 99.
    - 004060
    - NDd Ed
  - **CONFI** n: continuous weight transmission protocol, at the frequency set in **HErE2** item (from 10 to 200).
    - NDJ F
    - NOd Ed
  - *rI P*: continuous weight transmission protocol to RIP5/20/60, RIP50SHA, RIPLED series remote displays; the remote display shows the net weight or gross weight according to its settings.
  - Hdrl P: continuous weight transmission protocol to RIP6100, RIP675, RIP6125C series remote displays; the remote display shows the net weight or gross weight according to its settings.
  - Hdrl Pn: continuous weight transmission protocol to RIP6100, RIP675, RIP6125C series remote displays, when the remote display is set to gross weight:
    - if the instrument displays the gross weight, the remote display shows the gross weight.
    - if the instrument shows the net weight, the remote display shows the net weight alternated with the message *¬EL*.

- UEb5ru: see section WEBSITE.
  - *Rddr*: instrument address (from 1 to 99; default: 1).
  - HErt2: maximum transmission frequency (10 20 30 40 50 60 70 80 100 200; default: 10); to be set when the EDrt1 r transmission protocol is selected.
  - **JELRY**: delay in milliseconds which elapses before the instrument replies (from 0 to 200 ms; default: 0).



In order to apply the changes, turn the instrument off, wait for 10 seconds and turn it back on.

### PC SETUP

A PC can be connected, by a virtual serial port, to the instrument via ethernet TCP/IP. To install the virtual COM port, use the CPR Manager included in the supply: run file *CPR.exe* on CD, add a serial port, set an IP address (host) and a TCP port (10001), then save.

| S CPR Manager 4.3.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eile <u>C</u> om Port <u>D</u> evice <u>I</u> ools <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 🏷 Add/Remove 🛛 🔚 Save 💽 Refresh 🔑 Search For Devices 🤤 Exclude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Com Ports Hide 🤤 Settings Com 5 Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Com 5<br>Com 1 - 5<br>Com 2 [Inacce Com 2 [Inacce Com 3 [Inacce Com 4 [Inacce Com 5<br>Window's Port Name: Lantronix CPR Port (CDM5)<br>Window's Service Name: Upevice\CpIDevice5 Com 5 Com 5 tatus: Closed<br>Window's Service Name: CprDrvr Network Status: Disconnected<br>Reset to Defaults Cancel Edits<br>V Buffer Writes (Keep checked for better write performance)<br>Server Reconnect<br>No Net Close<br>Listen Mode Normal - port closed after disconnect<br>TCP Port<br>Add To Firewall<br>TCP KeepAlive<br>TCP KeepAlive<br>RFC 2217 DTR (In): Tie DTR to DCD, DSR always active<br>(TurBot)                                                                                                                                                                                                                                                                                                                                                                                  |
| Service       Host       ! TCP Por       WARNING! If the Host is on the other side of a router or a firewal, then UDP ports 30718, 43282 and 43283 may need to be firewal? exclusion list. You may experience trouble opening this com port if these UDP ports are not excluded.         3       10001       added to the firewal? exclusion list. You may experience trouble opening this com port if these UDP ports are not excluded.         3       4       added to the firewal?       Also, some legacy device servers respond on UDP port 43283. you are unable to connect to a device server, one possible.         5       5       be firewal?       added to the firewal?         6       added to the firewal?       added to the firewal?         7       added and can be removed by pressing this button.       Add Rx Port       The Firewal!s turned UN         8       added and can be removed by pressing this button.       Add Rx Port       The Firewal!s turned UN |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Use the just created virtual COM port to communicate with the instrument, using the protocol selected on it.

Alternatively connect to the instrument using a socket (e.g.: Winsock) on port 10001.

### **WEBSITE**

Set **UEb5ru** operation mode (into **EEHnEE** menu on the instrument) and restart the instrument to apply changes. Open your web browser and point to the instrument address to be monitored; it will open the following page:

| 🕙 LAUMAS Elettronica - Web Console                          | e - Mozilla Firefox                                                        |                        |
|-------------------------------------------------------------|----------------------------------------------------------------------------|------------------------|
| <u>File M</u> odifica <u>V</u> isualizza <u>C</u> ronologia | S <u>e</u> gnalibri <u>S</u> trumenti <u>A</u> iuto                        |                        |
| LAUMAS Elettronica - Web Console                            | +                                                                          |                        |
| 🔶 🔶 🕄 192.8.0.151/index.html                                |                                                                            | ☆ マ C 🛛 🚼 ד Google     |
|                                                             | LAUMAS <sup>®</sup><br>ELETTRONICA                                         | INNOVATION IN WEIGHING |
|                                                             | Login                                                                      |                        |
|                                                             |                                                                            |                        |
|                                                             |                                                                            | Username<br>LAUMAS     |
|                                                             |                                                                            | Password               |
|                                                             |                                                                            | Login Support          |
|                                                             |                                                                            |                        |
|                                                             | @1.41M4S Flettronics Sr1 _ All rights reserved _ Ver 1                     |                        |
|                                                             | of the form to block of the officer of the form of the officer of the form |                        |

Enter the "LAUMAS" user name and the password supplied with the instrument in respective fields, then press Login to enter the status page:

| LAUMAS<br>ELETTRONICA   |                     |      |         |                                                                    |                    |                                                  |       |      | Weighing |  |  |
|-------------------------|---------------------|------|---------|--------------------------------------------------------------------|--------------------|--------------------------------------------------|-------|------|----------|--|--|
| Status   Settings   Sup |                     |      |         |                                                                    | [Refresh] [Logout] |                                                  |       |      |          |  |  |
| SetPoint 💌              | ErCell              | ErAD | > 9 div | ≻110%                                                              | GrÖver             | NetOver                                          | Net   | Stab | ZERŎ     |  |  |
| Gross weight            | 130                 | kg   |         | Input<br>Output                                                    |                    |                                                  |       | 0    |          |  |  |
| Net weight              | 124                 | kg   |         | SetPoint 1<br>SetPoint 2<br>SetPoint 3<br>SetPoint 4<br>SetPoint 5 | 1                  | 100 kg<br>130 kg<br>200 kg<br>300 kg<br>10000 kg |       |      | 5.       |  |  |
| Semiautomatic tare      | Semiautomatic zero  |      | Gross   |                                                                    | E2PROM Save        |                                                  |       |      |          |  |  |
| Keypad lock             | Keypad/Display lock |      |         | Keypad/Display unlock                                              |                    |                                                  | Reset |      |          |  |  |

In case of incorrect parameter setting, the "INSTRUMENT DATA READING ERROR" message is displayed.
The instrument status page shows the gross and net weight read, the setpoint values set and allows you to send the main commands (Tare, Zero setting, E2PROM saving, etc.); it also shows instrument status, including possible anomalies:

| ErCell: | load cell error                              |
|---------|----------------------------------------------|
| ErAD:   | instrument converter error                   |
| >9div:  | weight exceeds maximum weight by 9 divisions |
| >110%   | weight exceeds 110% of full scale            |
| GrOver  | gross weight over 999999                     |
| NetOver | net weight over 999999                       |
| Net     | instrument shows the net weight              |
| Stab    | weight is stable                             |
| ZERO    | weight is zero                               |

Number of decimals and unit of measure are read by the instrument; if outputs are set in PLC mode, click on related icons to do a remote status check.

The screen to be displayed is selected through the drop down menu:

| SetPoint     | setpoint values                                                                |
|--------------|--------------------------------------------------------------------------------|
| Load Distr.: | percentage load distribution                                                   |
| <b>mV</b> :  | current response signal of each load cell expressed in mV                      |
| mV zero:     | response signal of each load cell, stored during zero setting, expressed in mV |
| Points:      | current response signal of each load cell expressed in converter points        |

Click on Settings to enter the instrument configuration page:

|                                            |                            |           |              | ATION<br>IN WEIGHING      |
|--------------------------------------------|----------------------------|-----------|--------------|---------------------------|
| Status   Settings   Support                |                            |           |              | [Refresh] [Logout]        |
|                                            |                            |           |              |                           |
| Language                                   | English 💌                  |           | Auto refresh | 5 💌 sec.                  |
| SetPoint 1                                 | 100.0                      | kg        |              |                           |
| SetPoint 2                                 | 0.0                        | kg        |              |                           |
| SetPoint 3                                 | 0.0                        | kg        |              |                           |
| SetPoint 4                                 | 500.0                      | kg        |              |                           |
| SetPoint 5                                 | 450.5                      | kg        |              |                           |
|                                            | SA\                        | /E SETTIN | GS           |                           |
| © LAUMAS Elettronica S.r.I All rights rese | rved - Ver. 1.00 - www.lau | umas.com  |              | S/N: 207100192 ver. 10604 |

In the configuration page you can:

- set language and page refresh time: by pressing SAVE SETTINGS data are saved on the instrument and will be used for subsequent accesses;
- set setpoint: by pressing SAVE SETTINGS the new values are sent to the instrument and activated, but will be lost at instrument restart or power off; to permanently save setpoint values, press E2PROM Save in status page.

# ETHERCAT

# **TECHNICAL SPECIFICATIONS**

| Port                                  | 2x RJ45 10Base-T or 100Base-TX (auto-detect)                                                          |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Link/activity LED indications (green) | offEthernet link not established<br>onEthernet link established<br>blinkingEthernet activity detected |  |  |

The instrument features an ETHERCAT dual port that allows to exchange the weight and the main parameters with an ETHERCAT *master*.



# PC/PLC SETUP

The instrument works as *slave* in an ETHERCAT network.

Load the xml file attached to the instrument to the ETHERCAT master development system.



The Ethernet over EtherCAT (EoE) protocol is not supported.

The data exchanged by the instrument are:

| Output Data from instrument (Reading) | ABBR | Addresses     |
|---------------------------------------|------|---------------|
| Gross Weight [4 byte]                 | GW   | 0x0000-0x0003 |
| Net Weight [4byte]                    | NW   | 0x0004-0x0007 |
| Exchange Register [4 byte]            | R1   | 0x0008-0x000B |
| Status Register [2 byte]              | SR1  | 0x000C-0x000D |
| Digital Inputs status [2 byte]        | INS  | 0x000E-0x000F |
| Digital Outputs status [2 byte]       | OUTS | 0x0010-0x0011 |

| Input Data to instrument (Writing) | ABBR   | Addresses     |
|------------------------------------|--------|---------------|
| Command Register [2 byte]          | CMDR   | 0x0000-0x0001 |
| Digital Outputs Command [2 byte]   | CMDOUT | 0x0002-0x0003 |
| Exchange Register [4 byte]         | W1     | 0x0004-0x0007 |

# ETHERNET/IP

# **TECHNICAL SPECIFICATIONS**

| Port                                | 2x RJ45 10Base-T or 100Base-TX (auto-detect)                         |  |  |
|-------------------------------------|----------------------------------------------------------------------|--|--|
| Link LED indications<br>(green)     | offEthernet link not established<br>onEthernet link established      |  |  |
| Activity LED indications<br>(amber) | offEthernet activity not detected blinkingEthernet activity detected |  |  |

The instrument features an Ethernet/IP dual port that allows to exchange the weight and the main parameters with an Ethernet/IP *scanner*.

# **INSTRUMENT SETUP**

# $\textcircled{+} \times \rightarrow \mathsf{EtHnEt}$

- SURP (default: n0): it allows to select the reading/writing of the byte in LITTLE-ENDIAN or BIG-ENDIAN mode
  - **YES**: BIG ENDIAN
  - n0: LITTLE ENDIAN
- I PRddr (default: 10.2.0.170): set instrument IP address
- **5UbnEL** (default: 255.255.255.0): set instrument Subnet Mask
- **GREURY** (default: 0.0.0.0): set Gateway address of Ethernet network



In order to apply the changes, press X until the display shows ELHnEL.

# PC/PLC SETUP

The instrument works as *adapter* in an Ethernet/IP network. Use one of the following communication types.

#### CLASS 1 CONNECTION (implicit messages)

Refer to one of the following procedures to configure the communication with the instrument:

- load the eds file attached to the instrument to the Ethernet/IP *scanner* development system (see table "32-BIT RUN/IDLE HEADER" for the output data interface);
- use a generic Ethernet/IP module: configure it with the parameters of the table "Parameters for class 1 communication" and choose the real-time transfer format from instrument to scanner (Target to Originator – T2O) between "32-BIT RUN/IDLE HEADER" and "PURE DATA" (see the respective tables for the output data interface).

| Parameters for class 1 communication                                                   |     |    |    |  |
|----------------------------------------------------------------------------------------|-----|----|----|--|
| Assembly Assembly Instance Size [Byte] Size [Byte]<br>32-bit run/idle header Pure data |     |    |    |  |
| Input                                                                                  | 101 | 18 | 22 |  |
| Output                                                                                 | 100 | 8  | 8  |  |
| Configuration                                                                          | 128 | 0  | 0  |  |

#### CLASS 3 CONNECTION (explicit messages)

Manually generate the request to be sent to the PLC using the parameters shown in the table "Manual settings for communication" (see table "PURE DATA" for the output data interface).

| Manual settings for communication |      |                          |  |  |  |
|-----------------------------------|------|--------------------------|--|--|--|
| Field Read Write                  |      |                          |  |  |  |
| Service                           | 0x0E | 0x10                     |  |  |  |
| Class                             | 0x04 | 0x04                     |  |  |  |
| Instance                          | 0x65 | 0x64                     |  |  |  |
| Attribute                         | 0x03 | 0x03                     |  |  |  |
| Data                              | NO   | Byte array to be written |  |  |  |

The data exchanged by the instrument are:

# 32-BIT RUN/IDLE HEADER

| Output Data from instrument (reading) | ABBR | Addresses<br>input assembly |
|---------------------------------------|------|-----------------------------|
| Gross Weight [4 byte]                 | GW   | 0x0000-0x0003               |
| Net Weight [4 byte]                   | NW   | 0x0004-0x0007               |
| Exchange Register [4 byte]            | R1   | 0x0008-0x000B               |
| Status Register [2 byte]              | SR1  | 0x000C-0x000D               |
| Digital Inputs status [2 byte]        | INS  | 0x000E-0x000F               |
| Digital Outputs status [2 byte]       | OUTS | 0x0010-0x0011               |

#### PURE DATA

| ABBR | Addresses<br>input assembly                  |
|------|----------------------------------------------|
|      | 0x0000-0x0003                                |
| GW   | 0x0004-0x0007                                |
| NW   | 0x0008-0x000B                                |
| R1   | 0x000C-0x000F                                |
| SR1  | 0x0010-0x0011                                |
| INS  | 0x0012-0x0013                                |
| OUTS | 0x0014-0x0015                                |
|      | ABBR<br>GW<br>NW<br>R1<br>SR1<br>INS<br>OUTS |

\* registers used by the ETHERNET/IP scanner to manage the communication.

| Input Data to instrument (Writing) | ABBR   | Addresses     |
|------------------------------------|--------|---------------|
| Command Register [2 byte]          | CMDR   | 0x0000-0x0001 |
| Digital Outputs Command [2 byte]   | CMDOUT | 0x0002-0x0003 |
| Exchange Register [4 byte]         | W1     | 0x0004-0x0007 |

#### MODBUS/TCP

# **TECHNICAL SPECIFICATIONS**

| Port                     | RJ45 10Base-T or 100Base-TX (auto-detect)                                 |  |  |
|--------------------------|---------------------------------------------------------------------------|--|--|
| Link LED indications     | offEthernet link not established<br>amber10 Mb/s<br>green100 Mb/s         |  |  |
| Activity LED indications | offEthernet activity not detected<br>amberHalf Duplex<br>greenFull Duplex |  |  |

The instrument features a Modbus/TCP port that allows to exchange the weight and the main parameters with a Modbus/TCP *master*.

# PC/PLC SETUP

The instrument works as *slave* in a Modbus/TCP network. Use port 502 for the communication.

# **IP ADDRESS SETTING**

Install the Lantronix DeviceInstaller application on a PC with Microsoft Windows operating system (run the *DEVINST.exe* file on the CD). Connect the PC to the instrument via LAN (point-to point or by hub/switch), run the application and click on Search:

| 🕮 Lantronix DeviceInstaller 4.3.0.5                      |                   |                                      |                   |
|----------------------------------------------------------|-------------------|--------------------------------------|-------------------|
| <u>File Edit View D</u> evice <u>T</u> ools <u>H</u> elp |                   |                                      |                   |
| 🔍 Search 👝 Eyclude 💊 Assign IP 🔗 Upgrade                 |                   |                                      |                   |
| - Lesteri Derice Oduic()                                 | Davis Datal Law   |                                      |                   |
| E Commerciane alle este lagele (LAND) (192.0.0.1EE)      | Device Details We | b Configuration Telnet Configuration |                   |
| Connessione alla rete locale (LAN) (192.8.0.155)         | neload Details    |                                      |                   |
|                                                          |                   | <b>B</b> :                           |                   |
|                                                          | would as T        | Property                             | value             |
|                                                          | 12 800            | Name<br>DHCP Device Name             |                   |
|                                                          | E                 | Group                                |                   |
|                                                          |                   | Comments                             |                   |
|                                                          | 1.00              | Device Family                        | XPort             |
|                                                          |                   | Туре                                 | XPort-03/04       |
|                                                          |                   | ID                                   | X5                |
|                                                          |                   | Hardware Address                     | 00-20-4A-E4-FF-41 |
|                                                          |                   | Firmware Version                     | 6.7               |
|                                                          |                   | Extended Firmware Version            | 6.7.0.1           |
|                                                          |                   | Online Status                        | Online            |
|                                                          |                   | IP Address                           | 192.8.0.138       |
|                                                          |                   | IP Address was Obtained              | Statically        |
|                                                          |                   | Subnet Mask                          | 255.255.255.0     |
|                                                          |                   | Gateway                              | 0.0.0             |
|                                                          |                   | Number of CUB partitions supported   | 6                 |
|                                                          |                   | Number of Ports                      | 1                 |
|                                                          |                   | TLP Keepalive                        | 45                |
|                                                          |                   | Televit Supported                    | 1 rue             |
|                                                          |                   | Leinet Port                          | 9999              |
|                                                          |                   | Maximum Paud Pate Supported          | 921600            |
|                                                          |                   | Firmware Llogradable                 |                   |
|                                                          |                   | Supports Configurable Pins           | True              |
|                                                          |                   | Supports Email Triggers              | True              |
|                                                          |                   | Supports AES Data Stream             | False             |
|                                                          |                   | Supports 485                         | True              |
|                                                          |                   | Supports 921K Baud Rate              | True              |
|                                                          |                   | Supports HTTP Server                 | True              |
|                                                          |                   | Supports HTTP Setup                  | True              |
|                                                          |                   | Supports 230K Baud Rate              | True              |
|                                                          |                   | Supports GPIO                        | True              |
|                                                          |                   |                                      |                   |
| 🗹 Ready                                                  |                   |                                      |                   |

Select the device found and click on Assign IP.



Select Assign a specific IP address, enter the desired values and click on Assign; wait for the procedure to complete (no need to restart the instrument).

Modbus/TCP commands and registers are the same as ModbusRTU protocol: for details see section **MODBUS-RTU**.

#### POWERLINK

# **TECHNICAL SPECIFICATIONS**

| Port                          | 2x RJ45 10Base-T or 100Base-TX (auto-detect) |
|-------------------------------|----------------------------------------------|
| Addresses                     | 1÷239                                        |
|                               |                                              |
| Link/activity LED indications | offEthernet link not established             |
|                               | onEthernet link established                  |
| (green)                       | blinkingEthernet activity detected           |

The instrument features a POWERLINK dual port that allows to exchange the weight and the main parameters with a POWERLINK *controller*.

# **INSTRUMENT SETUP**

# $\textcircled{+} \times \rightarrow \mathsf{EtHnEt}$

nDdEI d (default: 1): set the instrument address



In order to apply the changes, press X until the display shows ELHnEL.

# PC/PLC SETUP

The instrument works as *slave* in a POWERLINK network.

Load the xdd file attached to the instrument to the POWERLINK *master* development system. The data exchanged by the instrument are:

| Output Data from instrument (Reading) | ABBR | Addresses     |
|---------------------------------------|------|---------------|
| Gross Weight [4 byte]                 | GW   | 0x0000-0x0003 |
| Net Weight [4byte]                    | NW   | 0x0004-0x0007 |
| Exchange Register [4 byte]            | R1   | 0x0008-0x000B |
| Status Register [2 byte]              | SR1  | 0x000C-0x000D |
| Digital Inputs status [2 byte]        | INS  | 0x000E-0x000F |
| Digital Outputs status [2 byte]       | OUTS | 0x0010-0x0011 |

| Input Data to instrument (Writing) | ABBR   | Addresses     |
|------------------------------------|--------|---------------|
| Command Register [2 byte]          | CMDR   | 0x0000-0x0001 |
| Digital Outputs Command [2 byte]   | CMDOUT | 0x0002-0x0003 |
| Exchange Register [4 byte]         | W1     | 0x0004-0x0007 |

# **PROFIBUS-DP**

# **TECHNICAL SPECIFICATIONS**

| Baud rate              | Up to 12 Mb/s            |
|------------------------|--------------------------|
| Addresses              | 1÷125                    |
| Status LED indications | blinking (fast)          |
| (red)                  | blinking (slow)Bus error |

It is necessary to activate the termination resistance on the two devices located at the ends of the network.

The instrument features a Profibus-DP port that allows to exchange the weight and the main parameters with a Profibus-DP *master*.

# **INSTRUMENT SETUP**

# + $\rightarrow$ PrOFI

- Rddr (default: 1): set the instrument address in the Profibus network

In order to apply the changes, turn the instrument off, wait for 10 seconds and turn it back on.

# **PC/PLC SETUP**

The instrument works as *slave* in a Profibus-DP network. Load the gsd file attached to the instrument to the Profibus-DP development system. Usable software modules are:

| NAME                | DESCRIPTION                                                | ABBR  | R/W  | SIZE            |
|---------------------|------------------------------------------------------------|-------|------|-----------------|
| TLB4 Gross Weight   | Gross Weight                                               | GW    | R    | 4 byte          |
| TLB4 Net Weight     | Net Weight                                                 | NW    | R    | 4 byte          |
| TLB4 Peak Weight    | Peak Weight                                                | PW    | R    | 4 byte          |
| TLB4 Set-Point 1    | Setpoint 1                                                 | SP1   | R/W* | 4 byte / 4 byte |
| TLB4 Set-Point 2    | Setpoint 2                                                 | SP2   | R/W* | 4 byte / 4 byte |
| TLB4 Set-Point 3    | Setpoint 3                                                 | SP3   | R/W* | 4 byte / 4 byte |
| TLB4 Hysteresis 1   | Setpoint 1 Hysteresis                                      | HYS1  | R/W* | 4 byte / 4 byte |
| TLB4 Hysteresis 2   | Setpoint 2 Hysteresis                                      | HYS2  | R/W* | 4 byte / 4 byte |
| TLB4 Hysteresis 3   | Setpoint 3 Hysteresis                                      | HYS3  | R/W* | 4 byte / 4 byte |
| TLB4 Division/Unit  | Divisions and Units of Measure                             | DU    | R    | 2 byte          |
| TLB4 VisualCoeff    | Display coefficient                                        | COF   | R    | 4 byte          |
| TLB4 Inputs         | Inputs status                                              | INS   | R    | 2 byte          |
| TLB4 Outputs        | Outputs status                                             | OUTS  | R/W  | 2 byte / 2 byte |
| TLB4 Status Reg     | Status register                                            | SR1   | R    | 2 byte          |
| TLB4 Command Reg    | Command register                                           | CMDR  | W    | 2 byte          |
| TLB4 Exchange Reg** | Exchange register                                          | R1/W1 | R/W* | 4 byte / 4 byte |
| TLB4 ZeroAn Weight  | Zero Weight-Analog Output                                  | ANA0  | R/W* | 4 byte / 4 byte |
| TLB4 FSAn Weight    | Full Scale Weight-Analog Output                            | ANAFS | R/W* | 4 byte / 4 byte |
| TLB4 Divisions 1    | Channel 1 divisions                                        |       | R    | 4 byte          |
| TLB4 Divisions 2    | Channel 2 divisions                                        |       | R    | 4 byte          |
| TLB4 Divisions 3    | Channel 3 divisions                                        |       | R    | 4 byte          |
| TLB4 Divisions 4    | Channel 4 divisions                                        |       | R    | 4 byte          |
| TLB4 Preset Tare    | Preset tare (use with command 130 of the Command Register) | PT    | R/W  | 4 byte / 4 byte |

\*) 0x0000000 value in writing is ignored. To reset the value, write out 0x80000000.
\*\*) It also performs the sample weight register function (CALW), in accordance with previous versions.

### **PROFINET-IO**

# **TECHNICAL SPECIFICATIONS**

| Port                     | 2x RJ45 100Base-TX                  |  |
|--------------------------|-------------------------------------|--|
| Link LED indications     | offEthernet link not established    |  |
| (green)                  | onEthernet link established         |  |
| Activity LED indications | off Ethernet activity not detected  |  |
| (amber)                  | blinking Ethernet activity detected |  |

The instrument features a Profinet-IO dual port that allows to exchange the weight and the main parameters with a Profinet-IO *controller*.

# **INSTRUMENT SETUP**

# 

- **SURP** (default: **nD**): it allows to select the reading/writing of the byte in LITTLE-ENDIAN or BIG-ENDIAN mode
  - **JES**: LITTLE ENDIAN
  - nD: BIG ENDIAN

# PC/PLC SETUP

The instrument works as *device* in a Profinet-IO network and supports the MRP Client functionality. Load the gsdml file attached to the instrument to the Profinet-IO *controller* development system. Assign a name to the device (function *Assign Device Name*) using the following characters: lower case letters (a-z), numbers (0-9), minus character (-). Set at least 1 ms as Profinet's I/O refresh time.

|                                                                                                | LATIMAC [CDU 4044                                                                                                                         |                                                                                                                    | 1010 107011101                                                                                    | <b>a p</b> pruf                   | INET 10-59            | stem (100): PN/IE_1                                                                                               | TID4DI                 |                 |            |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|------------|
| PLC_TEST_                                                                                      | LAUMAS [CPU 1211                                                                                                                          | C DODODCJ V Pen                                                                                                    |                                                                                                   |                                   | Vista topo            | logica 📕 Vista                                                                                                    | li roto                | Vista d         | lispositiv |
| tlh4nnia                                                                                       |                                                                                                                                           |                                                                                                                    | Dov                                                                                               | da.                               |                       |                                                                                                                   |                        | I VISCA C       | iispositiv |
| ub4phio                                                                                        | E                                                                                                                                         |                                                                                                                    | J76                                                                                               |                                   |                       |                                                                                                                   |                        |                 |            |
|                                                                                                | Balleto -                                                                                                                                 |                                                                                                                    | V                                                                                                 |                                   |                       |                                                                                                                   |                        |                 |            |
|                                                                                                |                                                                                                                                           | ~                                                                                                                  |                                                                                                   |                                   |                       |                                                                                                                   |                        |                 |            |
| lista ganarali                                                                                 |                                                                                                                                           |                                                                                                                    |                                                                                                   |                                   |                       |                                                                                                                   |                        |                 |            |
| ista general                                                                                   | e dispositivi                                                                                                                             |                                                                                                                    |                                                                                                   |                                   |                       |                                                                                                                   |                        |                 |            |
| ista generalo<br>Ƴ Fail safe                                                                   | e dispositivi                                                                                                                             | Telaio di montaggio                                                                                                | Posto connettore                                                                                  | Indirizzo I                       | Indirizzo Q           | Тіро                                                                                                              | N° di ord.             | Firmware        | Commer     |
| ista generalo<br>₩ Fail safe<br>∡                                                              | e dispositivi<br>Unità<br>v tlb4pnio                                                                                                      | Telaio di montaggio<br>0                                                                                           | Posto connettore<br>0                                                                             | Indirizzo I                       | Indirizzo Q           | Tipo<br>TLB4 ProfiNetIO V1.0                                                                                      | N° di ord.<br>1541.100 | Firmware<br>1.0 | Comme      |
| ista generalo<br>₩ Fail safe<br>✓                                                              | ■<br>e dispositivi<br>Unità<br>✓ tlb4pnio<br>✓ PN-IO                                                                                      | Telaio di montaggio<br>0<br>0                                                                                      | Posto connettore<br>0<br>0 X1                                                                     | Indirizzo I                       | Indirizzo Q           | Tipo<br>TLB4 ProfiNetIO V1.0<br>tlb4pnio                                                                          | N° di ord.<br>1541.100 | Firmware<br>1.0 | Comme      |
| ista generale<br>₩ Fail safe<br>✓<br>✓                                                         | e dispositivi<br>Unità<br>• tildpnio<br>• PNHO<br>Port 1                                                                                  | Telaio di montaggio<br>0<br>0                                                                                      | Posto connettore<br>0<br>0 X1<br>0 X1 X1 P1                                                       | Indirizzo I                       | Indirizzo Q           | Tipo<br>TLB4 ProfiNetIO V1.0<br>tIb4pnio<br>Port 1                                                                | N° di ord.<br>1541.100 | Firmware<br>1.0 | Comme      |
| Îsta generale<br>Ƴ Fail safe<br>❤<br>❤<br>❤                                                    | e dispositivi<br>Unità<br>V tlb4pnio<br>PN-IO<br>Port 1<br>Port 2                                                                         | Telaio di montaggio<br>O<br>O<br>O<br>O                                                                            | Posto connettore<br>0 X1<br>0 X1 X1 P1<br>0 X1 X1 P2                                              | Indirizzo I                       | Indirizzo Q           | Tipo<br>TLB4 ProfiNetIO V1.0<br>tlb4pnio<br>Port 1<br>Port 2                                                      | N° di ord.<br>1541.100 | Firmware<br>1.0 | Comme      |
| ista generalo<br>₩ Fail safe<br>✓<br>✓<br>✓<br>✓<br>✓                                          | e dispositivi<br>Unità<br>V tlb4pnio<br>V PN+O<br>Port 1<br>Port 2<br>8 Bytes Output_1                                                    | Telaio di montaggio<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | Posto connettore<br>0<br>0 X1<br>0 X1 X1 P1<br>0 X1 X1 P2<br>1                                    | Indirizzo I                       | Indirizzo Q<br>256263 | Tipo<br>TLB4 ProfiNetIO V1.0<br>tlb4pnio<br>Port 1<br>Port 2<br>8 Bytes Output                                    | N° di ord.<br>1541.100 | Firmware        | Comme      |
| ista generalı<br>₩ Fail safe<br>✓<br>✓<br>✓<br>✓<br>✓                                          | e dispositivi<br>Unità<br>v tlb4pnio<br>v PN+O<br>Port 1<br>Port 2<br>8 Bytes Output_1                                                    | Telaio di montaggio<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | Posto connettore<br>0<br>0 X1<br>0 X1 X1 P1<br>0 X1 X1 P2<br>1<br>2                               | Indirizzo I                       | Indirizzo Q<br>256263 | Tipo<br>TLB4 ProfiNet/O V1.0<br>tlb4pnio<br>Port 1<br>Port 2<br>8 Bytes Output                                    | № di ord.<br>1541.100  | Firmware        | Comme      |
| ista generalo<br>Fail safe<br>V<br>V<br>V<br>V<br>V<br>V                                       | III<br>e dispositivi<br>Unità<br>• tlb4pnio<br>• PN+O<br>Port 1<br>Port 2<br>8 Bytes Output_1                                             | Telaio di montaggio<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | Posto connettore<br>0<br>0 X1<br>0 X1 X1 P1<br>0 X1 X1 P2<br>1<br>2<br>3                          | Indirizzo I                       | Indirizzo Q<br>256263 | Tipo<br>TLB4 ProfiNet/O V1.0<br>tlb4pnio<br>Port 1<br>Port 2<br>8 Bytes Output                                    | Nº di ord.<br>1541.100 | Firmware<br>1.0 | Comme      |
| ista generali<br>Fail safe                                                                     | e dispositivi<br>Unità<br>• tib4pnio<br>• PNHO<br>Port 1<br>Port 2<br>8 Bytes Output_1                                                    | Telaio di montaggio<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                     | Posto connettore<br>0<br>0 X1<br>0 X1 X1 P1<br>0 X1 X1 P2<br>1<br>2<br>3<br>4                     | Indirizzo I                       | Indirizzo Q<br>256263 | Tipo<br>TLB4 ProfiNetIO V1.0<br>tlb4pnio<br>Port 1<br>Port 2<br>8 Bytes Output                                    | N° di ord.<br>1541.100 | Firmware<br>1.0 | Comme      |
| ista generale<br>Pail safe<br>V<br>V<br>V<br>V<br>V                                            | III       e dispositivi       Unità       • tlb4pnio       • PN+0       Port 1       Port 2       8 Bytes Output_1       16 Bytes Input 1 | Telaio di montaggio<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O           | Posto connettore<br>0<br>0×1<br>0×1 x1 P1<br>0×1 x1 P2<br>1<br>2<br>3<br>4<br>5                   | Indirizzo I<br>256271             | Indirizzo Q<br>256263 | Tipo<br>TLB4 ProfiNetiO V1.0<br>tlb4pnio<br>Port 1<br>Port 2<br>8 Bytes Output<br>16 Bytes Input                  | № di ord.<br>1541.100  | Firmware<br>1.0 | Comme      |
| fista generale<br>Y Fail safe<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓ |                                                                                                                                           | Telaio di montaggio<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | Posto connettore<br>0<br>0 X1<br>0 X1 X1 P1<br>0 X1 X1 P2<br>1<br>2<br>3<br>4<br>5<br>5<br>6      | Indirizzo I<br>256271<br>272, 273 | Indirizzo Q<br>256263 | Tipo<br>TLB4 ProfiNetIO V1.0<br>tlb4pnio<br>Port 1<br>Port 2<br>8 Bytes Output<br>16 Bytes Input<br>2 Bytes Input | № di ord.<br>1541.100  | Firmware<br>1.0 | Commer     |
| lista generale<br>Y Fail safe<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓ | ■<br>e dispositivi<br>Unità<br>• tlb4pnio<br>• PN+O<br>Port 1<br>Port 2<br>8 Bytes Output_1<br>16 Bytes Input_1<br>2 Bytes Input_1        | Telaio di montaggio<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | Posto connettore<br>0<br>0 X1<br>0 X1 X1 P1<br>0 X1 X1 P2<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7 | 256271<br>272273                  | Indirizzo Q<br>256263 | Tipo<br>TLB4 ProfiNetIO V1.0<br>tlb4pnio<br>Port 1<br>Port 2<br>8 Bytes Output<br>16 Bytes Input<br>2 Bytes Input | № di ord.<br>1541.100  | Firmware        | Commer     |

The data exchanged by the instrument are:

| Output Data from instrument (Reading) | ABBR | Addresses     | Туре          |
|---------------------------------------|------|---------------|---------------|
| Gross Weight [4 byte]                 | GW   | 0x0000-0x0003 |               |
| Net Weight [4 byte]                   | NW   | 0x0004-0x0007 |               |
| Exchange Register [4 byte]            | R1   | 0x0008-0x000B | 16 byte input |
| Status Register [2 byte]              | SR1  | 0x000C-0x000D |               |
| Digital Inputs status [2 byte]        | INS  | 0x000E-0x000F |               |
| Digital Outputs status [2 byte]       | OUTS | 0x0010-0x0011 | 2 byte input  |

| Input Data to instrument (Writing) | ABBR   | Addresses     | Туре          |
|------------------------------------|--------|---------------|---------------|
| Command Register [2 byte]          | CMDR   | 0x0000-0x0001 |               |
| Digital Outputs Command [2 byte]   | CMDOUT | 0x0002-0x0003 | 8 byte output |
| Exchange Register [4 byte]         | W1     | 0x0004-0x0007 |               |

#### SERCOSIII

# **TECHNICAL SPECIFICATIONS**

| Port                          | 2x RJ45 10Base-T or 100Base-TX (auto-detect) |
|-------------------------------|----------------------------------------------|
| Addresses                     | 1÷511                                        |
|                               |                                              |
| Link/activity LED indications | offEthernet link not established             |
|                               | onEthernet link established                  |
| (green)                       | blinkingEthernet activity detected           |

The instrument features a SERCOSIII dual port that allows to exchange the weight and the main parameters with a SERCOSIII *master*.

# **INSTRUMENT SETUP**

# $\textcircled{+} \times \rightarrow \mathsf{EtHnEt}$

- Rddr (default: 1): set the instrument address



In order to apply the changes, press X until the display shows ELHnEL.

# PC/PLC SETUP

The instrument works as *slave* in a SERCOSIII network.

Load the sddml file attached to the instrument to the SERCOSIII *master* development system. The data exchanged by the instrument are:

| Output Data from instrument (Reading) | ABBR | Addresses     |
|---------------------------------------|------|---------------|
| AT Connection Control [2 byte]        |      | 0x0000-0x0001 |
| AT IO Status [2 byte]                 |      | 0x0002-0x0003 |
| Gross Weight [4 byte]                 | GW   | 0x0004-0x0007 |
| Net Weight [4byte]                    | NW   | 0x0008-0x000B |
| Exchange Register [4 byte]            | R1   | 0x000C-0x000F |
| Status Register [2 byte]              | SR1  | 0x0010-0x0011 |
| Digital Inputs status [2 byte]        | INS  | 0x0012-0x0013 |
| Digital Outputs status [2 byte]       | OUTS | 0x0014-0x0015 |

| Input Data to instrument (Writing) | ABBR   | Addresses     |
|------------------------------------|--------|---------------|
| MDT Connection Control [2 byte]    |        | 0x0000-0x0001 |
| MDT IO Control [2 byte]            |        | 0x0002-0x0003 |
| Command Register [2 byte]          | CMDR   | 0x0004-0x0005 |
| Digital Outputs Command [2 byte]   | CMDOUT | 0x0006-0x0007 |
| Exchange Register [4 byte]         | W1     | 0x0008-0x000B |

AT Connection Control, AT IO Status, MDT Connection Control and MDT IO Control are registers used by the SERCOSIII *master* to manage the communication.

### **PROGRAMMING OF SYSTEM PARAMETERS**

This section contains the commands and procedures for using the instrument through the communication interfaces; the abbreviation of the registers will be used instead of the extended name (see section **FIELDBUSES**).



#### WARNING: FOR THE DESCRIPTION, THE ALLOWED VALUES AND THE EXAMPLES CONCERNING ALL THE FUNCTIONS MENTIONED IN THIS SECTION, REFER TO THE USER MANUAL OF THE INSTRUMENT.

# WEIGHT VALUES

The weight values are expressed as positive integer numbers, including decimal figures, but without decimal point. Read the Status Register (SR1) to get more information on the weight.

# THEORETICAL CALIBRATION

# THEORETICAL FULL SCALE

When the default theoretical full scale is active, its fieldbus reading returns 0.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value in W1
- Send command 6501 to CMDR

• Send command 6502 to CMDR

READING

READING

• Read the value in R1

#### CC-LINK INTERFACE

#### WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 6501 to CMDR
- Run the CER procedure

- Write 1 in RYn3
- Send command 6501 to CMDR
- Run the CER procedure
- Read the value in R1

# **SENSITIVITY**



The sensitivity values used by the instrument are expressed as six-digit integer numbers. To write the sensitivity in the register, you must first multiply the value by 100000; to read the sensitivity, divide the value in the register by 100000. Example: to set the sensitivity to 2.00175, write 200175.

| MODBUS, | PROFIBUS-DP, | GENERIC | INTERFACES |
|---------|--------------|---------|------------|
|---------|--------------|---------|------------|

#### WRITING

- Multiply the value by 100000
- Write the value in W1
- Send command 6503 to CMDR

#### READING

- Send command 6504 to CMDR
- Read the value in R1
- Divide the value by 100000

# WRITING

- Multiply the value by 100000
- Write the value in W1
- Write 0 in RYn3
- Send command 6503 to CMDR
- Run the CER procedure

CC-LINK INTERFACE

#### READING

- Write 1 in RYn3
- Send command 6503 to CMDR
- Run the CER procedure
- Read the value in R1
- Divide the value by 100000

# **DIVISION**

| DIVISIONS |          |                 |       |          |                 |
|-----------|----------|-----------------|-------|----------|-----------------|
| Index     | Division | Active decimals | Index | Division | Active decimals |
| 0         | 100      | 0               | 10    | 0.05     | 2               |
| 1         | 50       | 0               | 11    | 0.02     | 2               |
| 2         | 20       | 0               | 12    | 0.01     | 2               |
| 3         | 10       | 0               | 13    | 0.005    | 3               |
| 4         | 5        | 0               | 14    | 0.002    | 3               |
| 5         | 2        | 0               | 15    | 0.001    | 3               |
| 6         | 1        | 0               | 16    | 0.0005   | 4               |
| 7         | 0.5      | 1               | 17    | 0.0002   | 4               |
| 8         | 0.2      | 1               | 18    | 0.0001   | 4               |
| 9         | 0.1      | 1               |       |          |                 |



When a parameter is expressed in weight value, it is necessary to consider the number of divisions and active decimals set on the instrument: the value must be multiplied or divided by 10<sup>n</sup> (n=active decimals, see table DIVISIONS) and rounded to the set divisions.

#### Examples: writing a value

| Weight value<br>to set | Division | Active decimals | Value to write<br>in the register     | Value rounded to the division |
|------------------------|----------|-----------------|---------------------------------------|-------------------------------|
| 100                    | 0.1      | 1               | 1000 given by 100x10 <sup>1</sup>     | 100.0                         |
| 12.00                  | 0.05     | 2               | 1200 given by 12.00x10 <sup>2</sup>   | 12.00                         |
| 33                     | 5        | 0               | 33 given by 33x10 <sup>o</sup>        | 35                            |
| 20.123                 | 0.002    | 3               | 20123 given by 20.123x10 <sup>3</sup> | 20.122                        |

#### Examples: reading a value

| Weight value read<br>by the instrument | Division | Active<br>decimals | Corresponding weight value            |
|----------------------------------------|----------|--------------------|---------------------------------------|
| 1000                                   | 0.1      | 1                  | 100.0 given by 1000/10 <sup>1</sup>   |
| 1200                                   | 0.05     | 2                  | 12.00 given by 1200/10 <sup>2</sup>   |
| 35                                     | 5        | 0                  | 35 given by 35/10º                    |
| 20122                                  | 0.002    | 3                  | 20.122 given by 20122/10 <sup>3</sup> |

MODBUS, PROFIBUS-DP INTERFACES

# WRITING

- Write the index\* in W1
- Send command 6505 to CMDR

\*see table DIVISIONS

#### GENERIC INTERFACE

#### WRITING

- Write the index\* in W1
- Send command 6505 to CMDR

\*see table DIVISIONS

CC-LINK INTERFACE

#### WRITING

- Write the index\* in W1
- Write 0 in RYn3
- Send command 6505 to CMDR
- Run the CER procedure

\*see table DIVISIONS

READING • Write 1 in RYn3

Read the index\* in R1

Send command 6505 to CMDR

Send command 6506 to CMDR

- Run the CER procedure
- Read the index\* in R1

# READING

• Read the index\* in the least significant byte (L byte) of DU

READING

#### MAXIMUM CAPACITY (BASE program)

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value in W1
- Send command 6511 to CMDR

Send command 6512 to CMDR

• Send command 6511 to CMDR

• Run the CER procedure

READING

READING

• Read the value in R1

• Write 1 in RYn3

#### CC-LINK INTERFACE

#### WRITING

• Write the value in W1

#### • Write 0 in RYn3

- Send command 6511 to CMDR
- Run the CER procedure

# Read the value in R1

# TARE WEIGHT ZERO SETTING

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

Send command 100 to CMDR

CC-LINK INTERFACE

- Send command 100 to CMDR
- Run the CER procedure

# **ZERO VALUE MANUAL ENTRY**

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value in W1
- Send command 6527 to CMDR

- Send command 6528 to CMDR
- Read the value in R1

#### CC-LINK INTERFACE

#### WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 6527 to CMDR
- Run the CER procedure

- READING • Write 1 in RYn3
- Send command 6527 to CMDR
- Run the CER procedure
- Read the value in R1

# READING

# **REAL CALIBRATION (WITH SAMPLE WEIGHTS)**



In order to correctly set a sample weight of negative value, it is necessary to consider the contents of the register you write in as a 32-bit signed number. If the development system does not handle signed numbers, enter the values in two's complement.

Example: to set the sample weight to -56 kg, enter the value indicated in the table into the register.

| DECIMAL VALUE | HEXADECIMAL VALUE |  |
|---------------|-------------------|--|
| -56           | 0xFFFFFC8         |  |

 $\underline{\mathbb{M}}$ 

When acquiring a single calibration point, the instrument replaces the existing calibration with the new one.

MODBUS INTERFACE

#### ACQUISITION OF A SINGLE CALIBRATION POINT

- Load onto the weighing system a sample weight equal to at least 50% of the maximum quantity to be weighed
- Write the loaded weight value in CALW
- Send command 101 to CMDR
- Read the outcome\* of the operation in CALW

# ACQUISITION OF MULTIPLE CALIBRATION POINTS

- Load onto the weighing system a sample weight
- Write the loaded weight value in CALW
- Send command 106 to CMDR
- Read the outcome\* of the operation in CALW
- Repeat the procedure up to a maximum of 8 sample weights

\* 0=OK

# CANCELLATION OF THE REAL CALIBRATION

Send command 104 to CMDR

| PROFIBUS-DP I | NTERFACE |
|---------------|----------|
|---------------|----------|

#### ACQUISITION OF A SINGLE CALIBRATION POINT

- Load onto the weighing system a sample weight equal to at least 50% of the maximum quantity to be weighed
- Write the loaded weight value in W1
- Write 0 in W1
- Send command 101 to CMDR
- Read the outcome\* of the operation in R1
- \* 0=OK

# CANCELLATION OF THE REAL CALIBRATION

• Send command 104 to CMDR

- ACQUISITION OF MULTIPLE CALIBRATION POINTS
- Load onto the weighing system a sample weight
- Write the loaded weight value in W1
- Write 0 in W1
- Send command 106 to CMDR
- Read the outcome\* of the operation in R1
- Repeat the procedure up to a maximum of 8 sample weights

# ACQUISITION OF A SINGLE CALIBRATION POINT

- Load onto the weighing system a sample weight equal to at least 50% of the maximum quantity to be weighed
- Write the loaded weight value in W1
- Send command 103 to CMDR
- Send command 101 to CMDR
- Send command 102 to CMDR
- Read the outcome\* of the operation in R1
- \* 0=OK

# **CANCELLATION OF THE REAL CALIBRATION**

Send command 104 to CMDR

#### CC-LINK INTERFACE

#### ACQUISITION OF A SINGLE CALIBRATION POINT

- Load onto the weighing system a sample weight equal to at least 50% of the maximum quantity to be weighed
- Write the loaded weight value in W1
- Write 0 in RYn3
- Send command 6555 to CMDR
- Run the CER procedure
- Send command 101 to CMDR
- Run the CER procedure
- Write 1 in RYn3
- Send command 6555 to CMDR
- Run the CER procedure
- Read the outcome\* of the operation in R1

#### \* 0=OK

#### CANCELLATION OF THE REAL CALIBRATION

- Send command 104 to CMDR
- Run the CER procedure

# ACQUISITION OF MULTIPLE CALIBRATION POINTS

- Load onto the weighing system a sample weight
- Write the loaded weight value in W1
- Write 0 in RYn3
- Send command 6555 to CMDR
- Run the CER procedure
- Send command 106 to CMDR
- Run the CER procedure
- Write 1 in RYn3
- Send command 6555 to CMDR
- Run the CER procedure
- Read the outcome\* of the operation in R1
- Repeat the procedure up to a maximum of 8 sample weights

#### ACQUISITION OF MULTIPLE CALIBRATION POINTS

- Load onto the weighing system a sample weight
- Write the loaded weight value in W1
- Send command 103 to CMDR
- Send command 106 to CMDR
- Send command 102 to CMDR
- Read the outcome\* of the operation in R1
- Repeat the procedure up to a maximum of 8 sample weights

#### **STABILITY**

#### FALE

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value\* in W1
- Send command 6579 to CMDR

\*0=NOdeo; 1=Node I

#### CC-LINK INTERFACE

# WRITING

- Write the value\* in W1
- Write 0 in RYn3
- Send command 6579 to CMDR
- Run the CER procedure

- READING
- Write 1 in RYn3
- Send command 6579 to CMDR
- Run the CER procedure
- Read the value\* in R1

\*0=NOdeo; 1=Node I

#### FI UE

The time required to consider the weight stable is expressed in tenths of a second. Example: to set up *LI ΠE* to 2.2 seconds, write 22 in W1.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value in W1
- Send command 6581 to CMDR

Send command 6582 to CMDR

READING

READING

Read the value in R1

#### CC-LINK INTERFACE

#### WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 6581 to CMDR
- Run the CER procedure

- Send command 6581 to CMDR
- Run the CER procedure
- Read the value in R1

Write 1 in RYn3

- READING
- Send command 6580 to CMDR
- Read the value\* in R1

# **ACTIVE CHANNELS MANAGEMENT**

| ACR (ACTIVE CHANNELS REGISTER) |           |       |   |  |  |
|--------------------------------|-----------|-------|---|--|--|
| bit 0                          | channel 1 | bit 4 | 0 |  |  |
| bit 1                          | channel 2 | bit 5 | 0 |  |  |
| bit 2                          | channel 3 | bit 6 | 0 |  |  |
| bit 3 channel 4 bit 7 0        |           |       |   |  |  |

bit=1: active channel; bit=0: not active channel;

#### Example: channels configurations

|             | ACR CONTENT | CHANNELS CONFIGURATION                  |
|-------------|-------------|-----------------------------------------|
| Hexadecimal | 0x0B        | channel 1, channel 2, channel 4: active |
| Binary      | 0b00001011  | channel 3: not active                   |



After editing, you must repeat equalization, zero setting and calibration using a sample weight.

# MANUAL SETTING OF ACTIVE CHANNELS

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the ACR value in W1
- Send command 6575 to CMDR

- Send command 6576 to CMDR
- Read the ACR value in R1

CC-LINK INTERFACE

#### WRITING

- Write the ACR value in W1
- Write 0 in RYn3
- Send command 6575 to CMDR
- Run the CER procedure

#### READING

READING

- Write 1 in RYn3
   Cand command CE7E to CMI
- Send command 6575 to CMDR
- Run the CER procedure
- Read the ACR value in R1

# **AUTOMATIC SETTING OF ACTIVE CHANNELS**

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

• Send command 6094 to CMDR

CC-LINK INTERFACE

- Send command 6094 to CMDR
- Run the CER procedure

# EQUALIZATION



At the end of the equalization you must perform the tare weight zero setting and, if necessary, the real calibration.

# **REAL EQUALIZATION**



Use a sample weight equal to at least 50% of the single load cell capacity.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### START OF REAL EQUALIZATION

• Send command 6700 to CMDR

#### ACQUISITION OF THE EQUALIZATION ZERO

- Unload the weighing system
- Wait for the weight to be stable
- Write 0 in W1
- Send command 6701 to CMDR

# ACQUISITION OF EQUALIZATION POINTS

- Place the sample weight in correspondence with a load cell
- Wait for the weight to be stable
- Write the index of the equalization point (from 1 to total active channels) in W1
- Send command 6701 to CMDR
- Repeat the procedure moving the sample weight in correspondence with the remaining load cells

#### CONCLUSION OF THE REAL EQUALIZATION

Send command 6702 to CMDR

CC-LINK INTERFACE

#### START OF REAL EQUALIZATION

- Send command 6700 to CMDR
- Run the CER procedure

#### ACQUISITION OF THE EQUALIZATION ZERO

- Unload the weighing system
- Wait for the weight to be stable
- Write 0 in W1
- Send command 6701 to CMDR
- Run the CER procedure

# ACQUISITION OF EQUALIZATION POINTS

- Place the sample weight in correspondence with a load cell
- Wait for the weight to be stable
- Write the index of the equalization point (from 1 to total active channels) in W1
- Send command 6701 to CMDR
- Run the CER procedure
- Repeat the procedure moving the sample weight in correspondence with the remaining load cells

# CONCLUSION OF THE REAL EQUALIZATION

- Send command 6702 to CMDR
- Run the CER procedure
- If the CER procedure does not end correctly, the equalization has failed and must be repeat

# THEORETICAL EQUALIZATION



The sensitivity values used by the instrument are expressed as six-digit integer numbers. To write the sensitivity in the register, you must first multiply the value by 100000; to read the sensitivity, divide the value in the register by 100000. Writing example: to set the sensitivity to 2.00175, write 200175. Reading example: if the read value is 203170, the sensitivity is 2.03170.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING OF SENSITIVITY VALUES

- Write the channel index in W1
- Send command 6703 to CMDR
- Multiply the load cell sensitivity value by 100000
- Write the value in W1 (write 0 if the channel is not connected to the load cell)
- Send command 6563 to CMDR
- Repeat the procedure for all 4 channels

#### CONCLUSION OF THEORETICAL EQUALIZATION

Send command 6704 to CMDR

#### **READING OF SENSITIVITY VALUES**

- Write the channel index in W1
- Send command 6564 to CMDR
- Read the value in R1
- Divide the value by 100000

#### WRITING OF SENSITIVITY VALUES

- Write the channel index in W1
- Send command 6703 to CMDR
- Run the CER procedure
- Multiply the load cell sensitivity value by 100000
- Write the value in W1 (write 0 if the channel is not connected to the load cell)
- Write 0 in RYn3
- Send command 6563 to CMDR
- Run the CER procedure
- Repeat the procedure for all 4 channels

# CONCLUSION OF THEORETICAL EQUALIZATION

- Send command 6704 to CMDR
- Run the CER procedure

# EQUALIZATION DELETION

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

• Send command 6046 to CMDR

#### CC-LINK INTERFACE

- Send command 6046 to CMDR
- Run the CER procedure

# **READING OF SENSITIVITY VALUES**

- Write the channel index in W1
- Write 1 in RYn3
- Send command 6563 to CMDR
- Run the CER procedure
- Read the value in R1
- Divide the value by 100000

# FILTER ON THE WEIGHT



The type and level of the filter are set through a 4-byte number in which the two H byte indicate the type of filter and the two L byte indicate the level of the filter.

| FILTER ON THE WEIGHT |          |            |                            |                        |
|----------------------|----------|------------|----------------------------|------------------------|
|                      | Response | time* [ms] | Display and serial port re | efresh frequency* [Hz] |
|                      | FAbe D   | FAbe 1     | EALE D                     | EYPE I                 |
| 0                    | 12       | 100        | 300                        | 100                    |
| 1                    | 150      | 330        | 100                        | 100                    |
| 2                    | 260      | 500        | 50                         | 100                    |
| 3                    | 425      | 700        | 25                         | 100                    |
| 4                    | 850      | 1100       | 12.5                       | 100                    |
| 5                    | 1700     | 1600       | 12.5                       | 100                    |
| 6                    | 2500     | 2700       | 12.5                       | 100                    |
| 7                    | 4000     | 3500       | 10                         | 100                    |
| 8                    | 6000     | 5000       | 10                         | 100                    |
| 9                    | 7000     | 6800       | 5                          | 100                    |
| A                    | 6        |            | 600                        | _                      |

\*indicative values

Example: set the filter on the weight as type 1 and level 5

|             | H (2 byte) | L (2 byte) | Total      |
|-------------|------------|------------|------------|
| Hexadecimal | 0x0001     | 0x0005     | 0x00010005 |
| Decimal     | 1          | 5          | 65541      |

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the level\* in the two L byte of W1
- Write the type\* in the two H byte of W1
- Send command 6519 to CMDR

\* see table FILTER ON THE WEIGHT

#### CC-LINK INTERFACE

#### WRITING

- Write the level\* in the two L byte of W1
- Write the type\* in the two H byte of W1
- Write 0 in RYn3
- Send command 6519 to CMDR
- Run the CER procedure
- \* see table FILTER ON THE WEIGHT

#### READING

READING

Read the level\* in the two L byte of R1 Read the type\* in the two H byte of R1

Send command 6520 to CMDR

- Write 1 in RYn3
- Send command 6519 to CMDR
- Run the CER procedure
- Read the level\* in the two L byte of R1
- Read the type\* in the two H byte of R1

# ANTI-PEAK

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Send command 6541 to CMDR

\*0=disabled; 1=enabled

CC-LINK INTERFACE

#### ENABLING WRITING

- Write the enabling status\* in W1
- Write 0 in RYn3
- Send command 6541 to CMDR
- Run the CER procedure
- \*0=disabled; 1=enabled

#### **ENABLING READING**

- Write 1 in RYn3
- Send command 6541 to CMDR
- Run the CER procedure
- Read the enabling status\* in R1

#### ZERO PARAMETERS

# **RESETTABLE WEIGHT SETTING FOR SMALL WEIGHT CHANGES**

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value in W1
- Send command 6529 to CMDR

Send command 6530 to CMDR

READING

Read the value in R1

#### CC-LINK INTERFACE

#### WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 6529 to CMDR
- Run the CER procedure

#### READING Write 1 in RYn3

- Send command 6529 to CMDR
- Run the CER procedure
- Read the value in R1

- ENABLING READING
- Send command 6542 to CMDR
- Read the enabling status\* in R1

### **AUTOMATIC ZERO SETTING AT POWER-ON**

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value\* in W1
- Send command 6521 to CMDR

\*0=function disabled

#### CC-LINK INTERFACE

#### WRITING

- Write the value\* in W1
- Write 0 in RYn3
- Send command 6521 to CMDR
- Run the CER procedure

#### READING

Read the value\* in R1

- Write 1 in RYn3
- Send command 6521 to CMDR
- Run the CER procedure
- Read the value\* in R1

\*0=function disabled

# ZERO TRACKING

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

# WRITING

- Write the value\* in W1
- Send command 6531 to CMDR
- \*0=function disabled

#### CC-LINK INTERFACE

#### WRITING

- Write the value\* in W1
- Write 0 in RYn3
- Send command 6531 to CMDR
- Run the CER procedure

\*0=function disabled

#### READING

READING

- Write 1 in RYn3
- Send command 6531 to CMDR

Send command 6532 to CMDR

Read the value\* in R1

- Run the CER procedure
- Read the value\* in R1

Send command 6522 to CMDR

READING

# SETTING UNITS OF MEASURE

| UNITS OF MEASURE         |               |                  |                                             |  |  |  |
|--------------------------|---------------|------------------|---------------------------------------------|--|--|--|
| Unit of measure<br>index | Visualisation | Description      | Display coefficient effect<br>on the weight |  |  |  |
| 0                        | HI LOG        | Kilograms        | No effect                                   |  |  |  |
| 1                        | G             | Grams            | No effect                                   |  |  |  |
| 2                        | F             | Tons             | No effect                                   |  |  |  |
| 3                        | LЬ            | Pounds*          | Multiplies                                  |  |  |  |
| 4                        | nEUEOn        | Newton*          | Multiplies                                  |  |  |  |
| 5                        | LIErE         | Litres*          | Divides                                     |  |  |  |
| 6                        | ЬЯг           | Bar*             | Multiplies                                  |  |  |  |
| 7                        | AFU           | Atmospheres*     | Multiplies                                  |  |  |  |
| 8                        | PI ECE        | Pieces*          | Divides                                     |  |  |  |
| 9                        | nEU-N         | Newton metres*   | Multiplies                                  |  |  |  |
| 10                       | ні LO-П       | Kilogram metres* | Multiplies                                  |  |  |  |
| 11                       | DEHEr         | Other*           | Multiplies                                  |  |  |  |

MODBUS, PROFIBUS-DP INTERFACES

#### WRITING

WRITING

• Write the index\* in W1

• Send command 6523 to CMDR

\*see table UNITS OF MEASURE

GENERIC INTERFACE

#### READING

- Send command 6524 to CMDR
- Read the index\* in R1

\*see table UNITS OF MEASURE

Send command 6523 to CMDR

• Write the index\* in W1

#### CC-LINK INTERFACE

#### WRITING

- Write the index\* in W1
- Write 0 in RYn3
- Send command 6523 to CMDR
- Run the CER procedure

\*see table UNITS OF MEASURE

#### READING

- Write 1 in RYn3
- Send command 6523 to CMDR
- Run the CER procedure
- Read the index\* in R1

- READING e index\* in the mos
- Read the index\* in the most significant byte (H byte) of DU

# **DISPLAY COEFFICIENT (BASE program)**



For the units marked with \* (see table UNITS OF MEASURE) the display coefficient can be set: the value must be multiplied by 10000.

If you intend to use the display coefficient you must enable it. The GW register contains the modified value according to the set coefficient.

Example: to set the display coefficient to 8.5711, write 85711 in W1 as follows:

|             | H (2 byte) | L (2 byte) | Total      |
|-------------|------------|------------|------------|
| Hexadecimal | 0x0001     | 0x4ECF     | 0x00014ECF |
| Decimal     | 1          | 20175      | 85711      |

MODBUS, PROFIBUS-DP INTERFACES

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Send command 6595 to CMDR

#### \*0=disabled; 1=enabled

#### **COEFFICIENT WRITING**

- Multiply the value by 10000
- Write the value in W1
- Send command 6525 to CMDR

#### **ENABLING READING**

- Send command 6596 to CMDR
- Read the enabling status\* in R1

#### **COEFFICIENT READING**

- Read the value in COF
- Divide the value by 10000

#### GENERIC INTERFACE

#### ENABLING WRITING

- Write the enabling status\* in W1
- Send command 6595 to CMDR

\*0=disabled; 1=enabled

#### **COEFFICIENT WRITING**

- Multiply the value by 10000
- Write the value in W1
- Send command 6525 to CMDR

#### ENABLING READING

- Send command 6596 to CMDR
- Read the enabling status\* in R1

#### **COEFFICIENT READING**

- Send command 6526 to CMDR
- Read the value in R1
- Divide the value by 10000

#### CC-LINK INTERFACE

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Write 0 in RYn3
- Send command 6595 to CMDR
- Run the CER procedure

\*0=disabled; 1=enabled

# **COEFFICIENT WRITING**

- Multiply the value by 10000
- Write the value in W1
- Write 0 in RYn3
- Send command 6525 to CMDR
- Run the CER procedure

#### **ENABLING READING**

- Write 1 in RYn3
- Send command 6595 to CMDR
- Run the CER procedure
- Read the enabling status\* in R1

#### **COEFFICIENT READING**

- Write 1 in RYn3
- Send command 6525 to CMDR
- Run the CER procedure
- Read the value in R1
- Divide the value by 10000

# SEMI-AUTOMATIC TARE (NET/GROSS)

the semi-automatic tare operation is lost upon instrument power-off.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### **ACTIVATION**

Send command 7 to CMDR

CC-LINK INTERFACE

ACTIVATION

Write 1 in RYn5

Write 1 in RYn6

# PRESET TARE

Example: set the preset tare to 69312

|             | H (2 byte) | L (2 byte) | Total      |
|-------------|------------|------------|------------|
| Hexadecimal | 0x0001     | 0x0EC0     | 0x00010EC0 |
| Decimal     | 1          | 3776       | 69312      |

MODBUS,

PROFIBUS-DP INTERFACES

WRITING

#### Write the value in PT

#### **ACTIVATION**

Send command 130 to CMDR

Read the value in PT

# DEACTIVATION

READING

Send command 9 to CMDR

DEACTIVATION

Send command 9 to CMDR

DEACTIVATION

#### GENERIC INTERFACE

### WRITING

- Write the value in W1
- Send command 6543 to CMDR

# **ACTIVATION**

Send command 130 to CMDR

#### CC-LINK INTERFACE

#### READING

READING

DEACTIVATION

Send command 6544 to CMDR

Read the value in R1

- Write 1 in RYn3
- Send command 6543 to CMDR

Send command 9 to CMDR

- Run the CER procedure
- Read the value in R1

# DEACTIVATION

- Send command 9 to CMDR
- Run the CER procedure

# SEMI-AUTOMATIC ZERO (WEIGHT ZERO-SETTING FOR SMALL VARIATIONS)

The zero-setting is lost upon instrument power-off.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

Send command 8 to CMDR

CC-LINK INTERFACE

Write 1 in RYn4

WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 6543 to CMDR
- Run the CER procedure

# **ACTIVATION**

- Send command 130 to CMDR
- Run the CER procedure

# PEAK (BASE program)

#### MODBUS, PROFIBUS-DP INTERFACES

By enabling the peak function, the value contained in PW is updated with the peak weight value recorded by the instrument; disabling the function, the update is interrupted.

#### **ENABLING WRITING**

#### **ENABLING READING**

Write the enabling status\* in W1
Send command 6597 to CMDR

- Send command 6598 to CMDR
   Dead the enabling status in D4
- Read the enabling status\* in R1

Send command 6598 to CMDR
Read the enabling status\* in R1

\*0=disabled; 1=enabled

GENERIC INTERFACE

By enabling the peak function, the value contained in GW is updated with the peak weight value recorded by the instrument; disabling the function, the update is interrupted.

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Send command 6597 to CMDR

\*0=disabled; 1=enabled

CC-LINK INTERFACE

By enabling the peak function, the value contained in GW is updated with the peak weight value recorded by the instrument; disabling the function, the update is interrupted.

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Write 0 in RYn3
- Send command 6597 to CMDR
- Run the CER procedure

ENABLING READING

ENABLING READING

- Write 1 in RYn3
- Send command 6597 to CMDR
- Run the CER procedure
- Read the enabling status\* in R1

\*0=disabled; 1=enabled

# ANALOG OUTPUT (TLB4 ONLY)

MODBUS, PROFIBUS-DP INTERFACES

#### WRITING THE ANALOG OUTPUT ZERO

• Write the value in ANA0

WRITING THE ANALOG OUTPUT FULL SCALE

Write the value in ANAFS

READING THE ANALOG OUTPUT ZERO

Read the value in ANA0

#### READING THE ANALOG OUTPUT FULL SCALE

• Read the value in ANAFS

# **AUTOMATIC DIAGNOSTICS OF LOAD DISTRIBUTION**



The threshold values used by the instrument are expressed as integer numbers with a decimal, therefore they must be multiplied by 10.

Example: to set the threshold percentage to 15% it is necessary to write 150.

# LOAD DIAGNOSTICS

| MODBUS, PROFIBUS-DP,                                                                                 | GENERIC INTERFACES                                  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| ENABLING WRITING                                                                                     | ENABLING READING                                    |  |  |  |  |
| Write the enabling status* in W1                                                                     | Send command 6572 to CMDR                           |  |  |  |  |
| <ul> <li>Send command 6571 to CMDR</li> </ul>                                                        | <ul> <li>Read the enabling status* in R1</li> </ul> |  |  |  |  |
| *0=disabled; 1=enabled                                                                               |                                                     |  |  |  |  |
| THRESHOLD WRITING                                                                                    | THRESHOLD READING                                   |  |  |  |  |
| <ul> <li>Multiply the threshold value by 10</li> </ul>                                               | Send command 6568 to CMDR                           |  |  |  |  |
| <ul> <li>Write the value in W1</li> </ul>                                                            | <ul> <li>Read the value in R1</li> </ul>            |  |  |  |  |
| <ul> <li>Send command 6567 to CMDR</li> </ul>                                                        | <ul> <li>Divide the value by 10</li> </ul>          |  |  |  |  |
| <ul> <li>CANCELLATION OF THE STORED LOAD DISTRIBUTIONS</li> <li>Send command 6072 to CMDR</li> </ul> |                                                     |  |  |  |  |
| CC-LINK I                                                                                            | NTERFACE                                            |  |  |  |  |
| ENABLING WRITING                                                                                     | ENABLING READING                                    |  |  |  |  |
| Write the enabling status* in W1                                                                     | Write 1 in RYn3                                     |  |  |  |  |
| Write 0 in RYn3                                                                                      | <ul> <li>Send command 6571 to CMDR</li> </ul>       |  |  |  |  |
| <ul> <li>Send command 6571 to CMDR</li> </ul>                                                        | <ul> <li>Run the CER procedure</li> </ul>           |  |  |  |  |
| Run the CER procedure                                                                                | <ul> <li>Read the enabling status* in R1</li> </ul> |  |  |  |  |
| *0=disabled; 1=enabled                                                                               |                                                     |  |  |  |  |
| THRESHOLD WRITING                                                                                    | THRESHOLD READING                                   |  |  |  |  |
| <ul> <li>Multiply the threshold value by 10</li> </ul>                                               | Write 1 in RYn3                                     |  |  |  |  |
| <ul> <li>Write the value in W1</li> </ul>                                                            | <ul> <li>Send command 6567 to CMDR</li> </ul>       |  |  |  |  |
| Write 0 in RYn3                                                                                      | <ul> <li>Run the CER procedure</li> </ul>           |  |  |  |  |
| <ul> <li>Send command 6567 to CMDR</li> </ul>                                                        | <ul> <li>Read the value in R1</li> </ul>            |  |  |  |  |
| Run the CER procedure                                                                                | <ul> <li>Divide the value by 10</li> </ul>          |  |  |  |  |
| CANCELLATION OF THE STORED LOAD DISTRIBUTIONS     Send command 6072 to CMDR                          |                                                     |  |  |  |  |

Run the CER procedure •

- 64 -

#### **DIAGNOSTICS ON ZERO**

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### TARE WEIGHT ZERO SETTING AND STORAGE OF THE LOAD DISTRIBUTION ON ZERO

• Send command 6122 to CMDR

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Send command 6573 to CMDR

\*0=disabled; 1=enabled

#### THRESHOLD WRITING

• Multiply the threshold value by 10

#### • Write the value in W1

• Send command 6569 to CMDR

#### **ENABLING READING**

- Send command 6574 to CMDR
- Read the enabling status\* in R1

#### THRESHOLD READING

- Send command 6570 to CMDR
- Read the value in R1
- Divide the value by 10

#### CC-LINK INTERFACE

# TARE WEIGHT ZERO SETTING AND STORAGE OF THE LOAD DISTRIBUTION ON ZERO

- Send command 6122 to CMDR
- Run the CER procedure

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Write 0 in RYn3
- Send command 6573 to CMDR
- Run the CER procedure

\*0=disabled; 1=enabled

#### THRESHOLD WRITING

- Multiply the threshold value by 10
- Write the value in W1
- Write 0 in RYn3
- Send command 6569 to CMDR
- Run the CER procedure

#### **ENABLING READING**

- Write 1 in RYn3
- Send command 6573 to CMDR
- Run the CER procedure
- Read the enabling status\* in R1

#### THRESHOLD READING

- Write 1 in RYn3
- Send command 6569 to CMDR
- Run the CER procedure
- Read the value in R1
- Divide the value by 10

# **CONFIRMATION OF THE DIAGNOSTICS ERROR**

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

• Send command 6084 to CMDR

#### CC-LINK INTERFACE

- Send command 6084 to CMDR
- Run the CER procedure

#### **READING OF THE LOAD PERCENTAGES ON EACH CHANNEL**



The load percentage values used by the instrument are expressed as integer numbers with a decimal, so they must be divided by 10.

Example: a value of 152 corresponds to a load percentage of 15.2%.

#### MODBUS INTERFACE

When the function is enabled, the exchange registers contain the value of each channel:

| Output Data from instrument (Reading) | Register |
|---------------------------------------|----------|
| Load percentage on channel 1 [2 byte] | 40053    |
| Load percentage on channel 2 [2 byte] | 40054    |
| Load percentage on channel 3 [2 byte] | 40055    |
| Load percentage on channel 4 [2 byte] | 40056    |

#### ENABLING

#### DISABLING

- Send command 6809 to CMDR
- Send command 6808 to CMDR

Write the percentage type\* in W1

\* 0=total load %; 1=load % without the zeroing component


If it is necessary to execute the same command twice consecutively, send command 0 between the first command and the following one.

## READING OF THE LOAD PERCENTAGES

- Write the percentage type in W1:
   0=total load %; 1=load % without the zeroing component
- Send the command relating to the channel concerned (see table) to CMDR
- Read the value in R1

| COMMAND   | R1 CONTENT                   |                              |  |  |
|-----------|------------------------------|------------------------------|--|--|
| CONINIAND | H (2 byte)                   | L (2 byte)                   |  |  |
| 6804      | Load percentage on channel 1 | Load percentage on channel 2 |  |  |
| 6805      | Load percentage on channel 3 | Load percentage on channel 4 |  |  |

CC-LINK INTERFACE

## **READING OF THE LOAD PERCENTAGES**

- Write the percentage type in W1: 0=total load %; 1=load % without the zeroing component
- Write 0 in RYn3
- Send the command relating to the channel concerned (see table) to CMDR
- Run the CER procedure
- Read the value in R1

| COMMAND  | R1 CONTENT                   |                              |  |  |
|----------|------------------------------|------------------------------|--|--|
| CONINAND | H (2 byte)                   | L (2 byte)                   |  |  |
| 6804     | Load percentage on channel 1 | Load percentage on channel 2 |  |  |
| 6805     | Load percentage on channel 3 | Load percentage on channel 4 |  |  |

## READING OF THE RESPONSE SIGNALS OF THE CELLS IN mV



The response signals of the load cells in mV are expressed as integers with two decimals, so they must be divided by 100.

Example: a value of 520 corresponds to a mV reading of 5.20 mV.

#### MODBUS INTERFACE

When the function is enabled, the exchange registers contain the value of each channel:

| Output Data from instrument (Reading) | Register |
|---------------------------------------|----------|
| mV on channel 1 [2 byte]              | 40053    |
| mV on channel 2 [2 byte]              | 40054    |
| mV on channel 3 [2 byte]              | 40055    |
| mV on channel 4 [2 byte]              | 40056    |

ENABLING

DISABLING

• Send command 6902 to CMDR

• Send command 6903 to CMDR

PROFIBUS-DP, GENERIC INTERFACES



If it is necessary to execute the same command twice consecutively, send command 0 between the first command and the following one.

#### READING OF THE RESPONSE SIGNALS OF THE CELLS IN mV

- Send the command relating to the channel concerned (see table) to CMDR
- Read the value in R1

| COMMAND   | R1 CC           | DNTENT          |
|-----------|-----------------|-----------------|
| CONINIAND | H (2 byte)      | L (2 byte)      |
| 6904      | mV on channel 1 | mV on channel 2 |
| 6905      | mV on channel 3 | mV on channel 4 |

CC-LINK INTERFACE

#### READING OF THE RESPONSE SIGNALS OF THE CELLS IN mV

- Write 0 in RYn3
- Send the command relating to the channel concerned (see table) to CMDR
- Run the CER procedure
- Read the value in R1

| COMMAND   | R1 CC           | DNTENT          |
|-----------|-----------------|-----------------|
| CONINIAND | H (2 byte)      | L (2 byte)      |
| 6904      | mV on channel 1 | mV on channel 2 |
| 6905      | mV on channel 3 | mV on channel 4 |

## **OUTPUTS AND INPUTS CONFIGURATION (BASE program)**

## OUTPUTS



The configuration of the outputs is set through 4-byte numbers in which the two H byte indicate the number of the output and the two L byte indicate the operating mode of the output.

| OCR (OUTPUTS CONFIGURATION REGISTER) |                     |                   |                     |                  |  |  |  |  |
|--------------------------------------|---------------------|-------------------|---------------------|------------------|--|--|--|--|
| Bit 7 Bit 6÷5 Bit 4 Bit 3÷1 Bit 0    |                     |                   |                     |                  |  |  |  |  |
| 0-DFF                                | 00 - <b>POS</b> nEG | 0 - <b>Gr 055</b> | 000 - <b>5E</b> Ł   | 0 - <b>DPE</b> n |  |  |  |  |
| 1 - <b>D</b> n                       | 01 - <b>POS</b>     | 1 - nEt           | 001 - <b>PLE</b>    | 1 - CLOSE        |  |  |  |  |
|                                      | 10 - <b>¬EG</b>     |                   | 010 - <b>5ЕЯЬLЕ</b> |                  |  |  |  |  |
|                                      | 11 - not used       |                   | 011 - <b>АLА-Л</b>  |                  |  |  |  |  |
|                                      |                     |                   | 100 - <b>EHOL</b>   |                  |  |  |  |  |

#### Example: configuration of an output

|             | H (2 byte) | L (2 byte) | Total      | OUTPUT CONFIGURATION          |
|-------------|------------|------------|------------|-------------------------------|
| Hexadecimal | 0x0003     | 0x00B1     | 0x000300B1 |                               |
| Decimal     | 3          | 177        | 196705     | Output 3/LLUSE/SEE/nEE/PUS/Un |

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the OCR value in the two L byte of W1
- Write the output number (1÷3) in the two H byte of W1

- READING
- Write the output number (1÷3) in W1
- Send command 6560 to CMDR
- Read the OCR value in R1

- Send command 6559 to CMDR
  - CC-LINK INTERFACE

#### WRITING

- Write the OCR value in the two L byte of W1
- Write the output number (1÷3) in the two H byte of W1
- Write 0 in RYn3
- Send command 6559 to CMDR
- Run the CER procedure

#### READING

- Write the output number (1÷3) in W1
- Write 1 in RYn3
- Send command 6559 to CMDR
- Run the CER procedure
- Read the OCR value in R1

#### INPUTS



The configuration of the inputs is set through 4-byte numbers in which the two H byte indicate the number of the input and the two L byte indicate the operating mode of the input.

| INPUTS CONFIGURATION                      |  |  |  |  |  |  |  |  |
|-------------------------------------------|--|--|--|--|--|--|--|--|
| Index 1 2 3 4 5 6                         |  |  |  |  |  |  |  |  |
| Function nE-LO ZErO PEAH PLC COntin COEFF |  |  |  |  |  |  |  |  |

#### Example: configuration of an input

|             | H (2 byte) | L (2 byte) | Total      | INPUT CONFIGURATION |
|-------------|------------|------------|------------|---------------------|
| Hexadecimal | 0x0002     | 0x0002     | 0x00020002 |                     |
| Decimal     | 2          | 2          | 131074     |                     |

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the index\* in the two L byte of W1
- Write the input number (1÷2) in the two H byte of W1
- Send command 6561 to CMDR

\*see table INPUTS CONFIGURATION

CC-LINK INTERFACE

## WRITING

- Write the index\* in the two L byte of W1
- Write the input number (1÷2) in the two H byte of W1
- Write 0 in RYn3
- Send command 6561 to CMDR
- Run the CER procedure

\*see table INPUTS CONFIGURATION

#### READING

READING

Write the input number  $(1 \div 2)$  in W1

Send command 6562 to CMDR

Read the index\* in R1

- Write the input number (1÷2) in W1
- Write 1 in RYn3
- Send command 6561 to CMDR
- Run the CER procedure
- Read the index\* in R1

## **READING OF THE DIGITAL INPUTS AND OUTPUTS STATUS**

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

 Read the status of digital inputs in INS and of digital outputs in OUTS (see sections PARAMETERS OF THE COMMUNICATION INTERFACES and that of the specific fieldbus for the identification of the registers).

#### CC-LINK INTERFACE

| DIGITAL INPUTS AND OUTPUTS STATUS |                |               |                 |  |  |  |
|-----------------------------------|----------------|---------------|-----------------|--|--|--|
| Bit 0                             | INPUT 1 status | Bit 16        | OUTPUT 1 status |  |  |  |
| Bit 1                             | INPUT 2 status | Bit 17        | OUTPUT 2 status |  |  |  |
| Bit 2                             |                | Bit 18        | OUTPUT 3 status |  |  |  |
| Bit 3                             |                | Bit 19        |                 |  |  |  |
| Bit 4                             |                | Bit 20        |                 |  |  |  |
| Bit 5÷Bit 15                      |                | Bit 21÷Bit 31 |                 |  |  |  |
|                                   |                |               |                 |  |  |  |

Bit=1: high input; Bit=0: low input

Bit=1: output is closed; Bit=0: output is open

#### Example:

| INPUT 1 | high | OUTPUTS 1 and 2 | open   |
|---------|------|-----------------|--------|
| INPUT 2 | low  | OUTPUT 3        | closed |

| R1 CONTENT                                                                                          |           |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|
| Bit 0         Bit 1         Bit 2÷15         Bit 16         Bit 17         Bit 18         Bit 19÷31 |           |  |  |  |  |  |  |  |
| 1                                                                                                   | 1 0 0 0 1 |  |  |  |  |  |  |  |

## READING OF THE DIGITAL INPUTS AND OUTPUTS STATUS

- Send command 6801 to CMDR
- Run the CER procedure
- Read the value in R1 (see table DIGITAL INPUTS AND OUTPUTS STATUS)

## DIGITAL OUTPUTS COMMAND

MODBUS INTERFACE

 Write the digital outputs status in OUTS (see sections PARAMETERS OF THE COMMUNICATION INTERFACES and that of the specific fieldbus for the identification of the registers).

This register is used for the BASE program only; it allows to control the outputs set to *PLE* mode (see section **OUTPUTS AND INPUTS CONFIGURATION (BASE program)**).

PROFIBUS-DP, GENERIC INTERFACES

 Write the digital outputs status in CMDOUT (see sections PARAMETERS OF THE COMMUNICATION INTERFACES and that of the specific fieldbus for the identification of the registers).

|       | CC-LINK I               | INTERFA | CE            |  |  |  |  |
|-------|-------------------------|---------|---------------|--|--|--|--|
|       | DIGITAL OUTPUTS COMMAND |         |               |  |  |  |  |
| Bit 0 | OUTPUT 1 status         | Bit 8   |               |  |  |  |  |
| Bit 1 | OUTPUT 2 status         | Bit 9   |               |  |  |  |  |
| Bit 2 | OUTPUT 3 status         | Bit 10  |               |  |  |  |  |
| Bit 3 |                         | Bit 11  |               |  |  |  |  |
| Bit 4 |                         | Bit 12  |               |  |  |  |  |
| Bit 5 |                         | Bit 13  |               |  |  |  |  |
| Bit 6 |                         | Bit 14  |               |  |  |  |  |
| Bit 7 |                         | Bit 15  | Force outputs |  |  |  |  |

Bit=1: output is closed; Bit=0: output is open



Setting bit 15 to 1 on the PLC, the master takes control of all the outputs, whatever their setting.

## WRITING OF THE DIGITAL OUTPUTS STATUS

- Write the digital outputs status in W1 (see table DIGITAL OUTPUTS COMMAND)
- Write 0 in RYn3
- Send command 6802 to CMDR
- Run the CER procedure

## **OUTPUTS AND INPUTS CONFIGURATION (LOAD program)**

In the LOAD program the inputs and outputs are not configurable but operate as follows:

- INPUT 1: START
- INPUT 2: STOP

- OUTPUT 1: PRESET
- OUTPUT 2: SET
- OUTPUT 3: CYCLE END

## SETPOINT PROGRAMMING (BASE program)

## <u>SETPOINT</u>



These values are set to zero if the calibration is changed significantly (see sections THEORETICAL CALIBRATION and REAL CALIBRATION (WITH SAMPLE WEIGHTS)).

Setpoint are stored to RAM and lost upon instrument power off; to save them in EEPROM, so that they are maintained upon instrument power on, a specific command must be sent to CMDR.

MODBUS, PROFIBUS-DP INTERFACES

#### WRITING

• Read the value in the register SPn\*

READING

\*n=setpoint number (see sections **PARAMETERS OF THE COMMUNICATION INTERFACES** and that of the specific fieldbus)

GENERIC INTERFACE

#### WRITING AND READING COMMANDS

| SETPOINT   | WRITING | READING |
|------------|---------|---------|
| Setpoint 1 | 93      | 90      |
| Setpoint 2 | 94      | 91      |
| Setpoint 3 | 95      | 92      |

#### WRITING

- Write the value in W1
- Send command\* to CMDR

\*see table WRITING AND READING COMMANDS

#### READING

- Send command\* to CMDR
- Read the value in R1

#### CC-LINK INTERFACE

#### WRITING AND READING COMMANDS

| SETPOINT   | WRITING | READING |
|------------|---------|---------|
| Setpoint 1 | 6545    | 6545    |
| Setpoint 2 | 6547    | 6547    |
| Setpoint 3 | 6549    | 6549    |

#### WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command\* to CMDR
- Run the CER procedure

#### READING

- Write 1 in RYn3
- Send command\* to CMDR
- Run the CER procedure
- Read the value in R1

\*see table WRITING AND READING COMMANDS

#### SETPOINT STORAGE IN EEPROM

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

• Send command 99 to CMDR

CC-LINK INTERFACE

- Send command 99 to CMDR
- Run the CER procedure

## **HYSTERESIS**



These values are set to zero if the calibration is changed significantly (see sections **THEORETICAL CALIBRATION** and **REAL CALIBRATION** (WITH SAMPLE WEIGHTS)).

MODBUS, PROFIBUS-DP INTERFACES

#### WRITING

READING

• Write the value in the register HYSn\*

• Read the value in the register HYSn\*

\*n=hysteresis number (see sections **PARAMETERS OF THE COMMUNICATION INTERFACES** and that of the specific fieldbus)

#### GENERIC INTERFACE

#### WRITING AND READING COMMANDS

| HYSTERESIS   | WRITING | READING |
|--------------|---------|---------|
| Hysteresis 1 | 6583    | 6584    |
| Hysteresis 2 | 6585    | 6586    |
| Hysteresis 3 | 6587    | 6588    |

#### WRITING

- Write the value in W1
- Send command\* to CMDR

## READING

- Send command\* to CMDR
- Read the value in R1

\*see table WRITING AND READING COMMANDS

#### CC-LINK INTERFACE

#### WRITING AND READING COMMANDS

| HYSTERESIS   | WRITING | READING |
|--------------|---------|---------|
| Hysteresis 1 | 6583    | 6583    |
| Hysteresis 2 | 6585    | 6585    |
| Hysteresis 3 | 6587    | 6587    |

#### WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command\* to CMDR
- Run the CER procedure

#### READING

- Write 1 in RYn3
- Send command\* to CMDR
- Run the CER procedure
- Read the value in R1

\*see table WRITING AND READING COMMANDS

## **OVERLOAD THRESHOLD FOR SINGLE CHANNEL**

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value in W1
- Send command 6577 to CMDR

- Send command 6578 to CMDR
- Read the value in R1

#### CC-LINK INTERFACE

#### WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 6577 to CMDR
- Run the CER procedure

READING

READING

- Write 1 in RYn3
- Send command 6577 to CMDR
- Run the CER procedure
- Read the value in R1

## **BATCHING (LOAD program)**

## **BATCHING SEQUENCE**

This section only shows the commands of the phases that can be managed via the fieldbus.

## **BATCHING SEQUENCE PROGRAMMING**

Select the number of cycles to run (from 1 to 9999).

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

## WRITING

- Write the value in W1
- Send command 1063 to CMDR

- Send command 1064 to CMDR
- Read the value in R1
- CC-LINK INTERFACE

## WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 1063 to CMDR
- Run the CER procedure

# **BATCHING START**

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

Send command 201 to CMDR

## CC-LINK INTERFACE

- Send command 201 to CMDR
- Run the CER procedure

READING

READING

Send command 1063 to CMDR

Run the CER procedure

Read the value in R1

Write 1 in RYn3

## **BATCHING STOP AND PAUSE**



The START contact must be open.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

|                                                  | STOP                     | PAUSE                                            | RESUME                                           |  |  |
|--------------------------------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|--|--|
| <ul> <li>Send command 204<br/>to CMDR</li> </ul> |                          | <ul> <li>Send command 202<br/>to CMDR</li> </ul> | <ul> <li>Send command 203<br/>to CMDR</li> </ul> |  |  |
|                                                  |                          | CC-LINK INTERFACE                                |                                                  |  |  |
|                                                  | STOP                     | PAUSE                                            | RESUME                                           |  |  |
| •                                                | Send command 204 to CMDR | <ul> <li>Send command 202<br/>to CMDR</li> </ul> | Send command 203     to CMDR                     |  |  |
| •                                                | Run the CER procedure    | Run the CER procedure                            | Run the CER procedure                            |  |  |

## WAITING PHASE



This operation is required after the SET is opened, only if **CONAnd**=1.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

• Send command 209 to CMDR

CC-LINK INTERFACE

- Send command 209 to CMDR
- Run the CER procedure

## **BATCHING DATA READING**



Data is only available at the end of the batching phase.

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

- Send command 1094 to CMDR
- Read the data processing status in R1 (1= data ready; 0= data not ready)
- If data are ready, send command 2100 to CMDR to make them available
- Read the data (see table DATA READING)
- Only if 5LR\_E=1: send command 250 to CMDR to confirm the data reading and proceed to a new batching

#### DATA READING

| ACTUAL BATCHED<br>WFIGHT | • | Send command 2101 to CMDR<br>Read the value in R1 expressed as 32 bit signed number |
|--------------------------|---|-------------------------------------------------------------------------------------|
| STARTING TARE            | • | Send command 2103 to CMDR<br>Read the value in R1 expressed as 32 bit signed number |

#### CC-LINK INTERFACE

- Write 1 in RYn3
- Send command 1094 to CMDR
- Run the CER procedure
- Read the data processing status in R1 (1= data ready; 0= data not ready)
- If data are ready, send command 2100 to CMDR to make them available
- Run the CER procedure
- Read the data (see table DATA READING)
- Only if **5LR**<sub>u</sub>**E**=1: send command 250 to CMDR and run the CER procedure to confirm the data reading and proceed to a new batching

#### DATA READING

| ACTUAL BATCHED<br>WEIGHT |   | Send command 2101 to CMDR                              |  |
|--------------------------|---|--------------------------------------------------------|--|
|                          |   | Run the CER procedure                                  |  |
|                          |   | Read the value in R1 expressed as 32 bit signed number |  |
|                          | • | Send command 2103 to CMDR                              |  |
| STARTING TARE            |   | Run the CER procedure                                  |  |
|                          |   | Read the value in R1 expressed as 32 bit signed number |  |

## **OPERATION SETTINGS**

|                | BCR (BATCHING CONFIGURATION REGISTER) |               |               |                 |                |                |  |  |
|----------------|---------------------------------------|---------------|---------------|-----------------|----------------|----------------|--|--|
| Bit 7          | Bit 6                                 | Bit 5÷4       | Bit 3         | Bit 2           | Bit 1          | Bit 0          |  |  |
|                | notucod                               |               | n a t u a a d | nEHE P          |                |                |  |  |
|                | not used                              |               | not used      | SEAPPE          | [DNAnd         | EI NE          |  |  |
| 0 <b>- n</b> 0 | 0                                     | 00 - not used | 0             | 0 <b>- n</b> D  | 0 <b>– n</b> 0 | 0 <b>- nD</b>  |  |  |
| 1 - <b>9E5</b> |                                       | 01 - 1        |               | 1 - <b>9</b> E5 | 1 - <b>9E5</b> | 1 - <b>9E5</b> |  |  |
|                |                                       | 10 - <b>2</b> |               |                 |                |                |  |  |
|                |                                       | 11 - <b>3</b> |               |                 |                |                |  |  |

Examples:

| •        | <b>BCR CONTENT</b> | PARAMETERS CONFIGURATION |     |        |        |       |     |
|----------|--------------------|--------------------------|-----|--------|--------|-------|-----|
|          |                    |                          |     | nEHE P |        |       |     |
| Binary   | Hexadecimal        | Decimal                  |     | SEAPTE | CONAnd | ΕΙ ΠΕ |     |
| 00010010 | 0x12               | 018                      | nD  | 1      | -0     | 9ES   | 'nD |
| 10110001 | 0xB1               | 177                      | 9E5 | Э      | nD     | nD    | YES |
| 10100110 | 0xA6               | 166                      | 9E5 | 2      | 9E5    | 9ES   | 'nD |

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the BCR value in W1
- Send command 1081 to CMDR

• Send command 1082 to CMDR

READING

• Read the BCR value in R1

| CC-LINK | INTERFACE                                     |                                                                        |
|---------|-----------------------------------------------|------------------------------------------------------------------------|
|         | READING                                       |                                                                        |
|         | Write 1 in RYn3                               |                                                                        |
|         | <ul> <li>Send command 1081 to CMDR</li> </ul> |                                                                        |
|         | CC-LINK                                       | CC-LINK INTERFACE  READING  Write 1 in RYn3  Send command 1081 to CMDR |

- Run the CER procedure
  - Read the BCR value in R1

- Send command 1081 to CMDR
- Run the CER procedure

## **PROGRAMMING OF BATCHING CONSTANTS**

#### WARNING: FOR THE DESCRIPTION, THE ALLOWED VALUES AND THE EXAMPLES CONCERNING ALL THE FUNCTIONS MENTIONED IN THIS SECTION, REFER TO THE USER MANUAL OF THE INSTRUMENT.



The time values of the batching constants are expressed in tenths of a second. Example: to set WAITING TIME to 10.2 seconds, write 102 in W1.

## MINIMUM WEIGHT

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

#### • Write the value in W1

• Send command 1003 to CMDR

• Send command 1004 to CMDR

READING

• Read the value in R1

CC-LINK INTERFACE

#### WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 1003 to CMDR
- Run the CER procedure

#### READING Write 1 in RYn3

- Send command 1003 to CMDR
- Run the CER procedure
- Read the value in R1

## MAXIMUM WEIGHT

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

## WRITING

- Write the value\* in W1
- Send command 1001 to CMDR

- READING
- Send command 1002 to CMDR
- Read the value\* in R1

## \*0=function disabled

CC-LINK INTERFACE

## WRITING

- Write the value\* in W1
- Write 0 in RYn3
- Send command 1001 to CMDR
- Run the CER procedure

\*0=function disabled

- READING
- Write 1 in RYn3
- Send command 1001 to CMDR
- Run the CER procedure
- Read the value\* in R1

## SAFE EMPTYING TIME

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

CC-LINK INTERFACE

#### WRITING

- Write the value in W1
- Send command 1005 to CMDR

- READING
- Send command 1006 to CMDR
- Read the value in R1

## WRITING

• Write the value in W1

#### • Write 0 in RYn3

- Send command 1005 to CMDR
- Run the CER procedure

## READING

- Write 1 in RYn3
- Send command 1005 to CMDR
- Run the CER procedure
- Read the value in R1

## WAITING TIME

|       | MODBUS,                                                                                     | PROFIBUS-DP,                            | GENERIC                                                                        | INTERFACES                                                                             |      |
|-------|---------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|
|       | WRITING                                                                                     |                                         |                                                                                | READING                                                                                |      |
| •     | Write the value in W1<br>Send command 1007 to C                                             | CMDR                                    | <ul><li>Send co</li><li>Read the</li></ul>                                     | ommand 1008 to CMDR<br>e value in R1                                                   |      |
|       |                                                                                             | CC-LINK II                              | NTERFACE                                                                       |                                                                                        |      |
|       | WRITING                                                                                     |                                         |                                                                                | READING                                                                                |      |
| • • • | Write the value in W1<br>Write 0 in RYn3<br>Send command 1007 to 0<br>Run the CER procedure | CMDR                                    | <ul> <li>Write 1</li> <li>Send co</li> <li>Run the</li> <li>Read th</li> </ul> | in RYn3<br>ommand 1007 to CMDR<br>CER procedure<br>e value in R1                       |      |
|       |                                                                                             |                                         |                                                                                |                                                                                        |      |
|       | MODBUS,                                                                                     | NO COMPAR                               | GENERIC                                                                        | INTERFACES                                                                             | I    |
|       | MODBUS,<br>WRITING                                                                          | NO COMPAR                               | GENERIC                                                                        | INTERFACES READING                                                                     | 1    |
| •     | MODBUS,<br>WRITING<br>Write the value in W1<br>Send command 1057 to C                       | NO COMPAR<br>PROFIBUS-DP,               | GENERIC<br>• Send co<br>• Read th                                              | INTERFACES<br><b>READING</b><br>ommand 1058 to CMDR<br>e value in R1                   |      |
| •     | MODBUS,<br>WRITING<br>Write the value in W1<br>Send command 1057 to C                       | NO COMPAR<br>PROFIBUS-DP,<br>CC-LINK II | GENERIC<br>• Send co<br>• Read th<br>NTERFACE                                  | INTERFACES<br><b>READING</b><br>ommand 1058 to CMDR<br>e value in R1                   | <br> |
| •     | MODBUS,<br>WRITING<br>Write the value in W1<br>Send command 1057 to C                       | NO COMPAR<br>PROFIBUS-DP,<br>CC-LINK II | GENERIC<br>• Send co<br>• Read th<br>NTERFACE                                  | INTERFACES<br><b>READING</b><br>ommand 1058 to CMDR<br>e value in R1<br><b>READING</b> | 1    |

- 81 -

## NO PRODUCT LOAD TIME

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

CC-LINK INTERFACE

#### WRITING

- Write the value in W1
- Send command 1027 to CMDR

#### READING

- Send command 1028 to CMDR
- Read the value in R1

## WRITING

• Write the value in W1

#### • Write 0 in RYn3

- Send command 1027 to CMDR
- Run the CER procedure

## READING

- Write 1 in RYn3
- Send command 1027 to CMDR
- Run the CER procedure
- Read the value in R1

## NO PRODUCT UNLOAD TIME

|   |     | MODBUS,              | PROFIBUS-DE | P, GE | NERIC   | INTERFACES          |
|---|-----|----------------------|-------------|-------|---------|---------------------|
|   |     | WRITING              |             |       |         | READING             |
| • | Wri | te the value in W1   |             | ٠     | Send co | ommand 1030 to CMDR |
| • | Ser | nd command 1029 to ( | CMDR        | •     | Read th | ne value in R1      |
|   |     |                      |             |       |         |                     |
|   |     |                      | CC-LINK     | INTE  | RFACE   |                     |
|   |     | WRITING              |             |       |         | READING             |

## • Write the value in W1

## • Write 0 in RYn3

- Send command 1029 to CMDR
- Run the CER procedure

Write 1 in RYn3

- Send command 1029 to CMDR
- Run the CER procedure
- Read the value in R1

# <u>FALL</u>

|                       | MODBUS, PROFIBUS-DP,                                                                                                                                                                                                                                                                                                                                                                                | GENERIC INTERFACES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                       | WRITING                                                                                                                                                                                                                                                                                                                                                                                             | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| •                     | Write the value in W1                                                                                                                                                                                                                                                                                                                                                                               | Send command 1032 to CMDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| •                     | Send command 1031 to CMDR                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Read the value in R1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                       | CC-LINK I                                                                                                                                                                                                                                                                                                                                                                                           | INTERFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       | WRITING                                                                                                                                                                                                                                                                                                                                                                                             | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| •                     | Write the value in W1                                                                                                                                                                                                                                                                                                                                                                               | Write 1 in RYn3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| •                     | Write 0 in RYn3                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Send command 1031 to CMDR</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| •                     | Send command 1031 to CMDR                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Run the CER procedure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| •                     | Run the CER procedure                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Read the value in R1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                       | 501.                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                       | MODBUS, PROFIBUS-DP,                                                                                                                                                                                                                                                                                                                                                                                | GENERIC INTERFACES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                       | WRITING                                                                                                                                                                                                                                                                                                                                                                                             | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| •                     | Write the value in W1                                                                                                                                                                                                                                                                                                                                                                               | Send command 1034 to CMDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| •                     | Send command 1033 to CMDR                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Read the value in R1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                       | CC-LINK I                                                                                                                                                                                                                                                                                                                                                                                           | NTERFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                       | WRITING                                                                                                                                                                                                                                                                                                                                                                                             | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| •                     | WRITING<br>Write the value in W1                                                                                                                                                                                                                                                                                                                                                                    | • Write 1 in RYn3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| •                     | WRITING<br>Write the value in W1<br>Write 0 in RYn3                                                                                                                                                                                                                                                                                                                                                 | <ul><li>READING</li><li>Write 1 in RYn3</li><li>Send command 1033 to CMDR</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| •                     | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR                                                                                                                                                                                                                                                                                                                    | <ul> <li>READING</li> <li>Write 1 in RYn3</li> <li>Send command 1033 to CMDR</li> <li>Run the CER procedure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 |  |
| •                     | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure                                                                                                                                                                                                                                                                                           | <ul> <li>READING</li> <li>Write 1 in RYn3</li> <li>Send command 1033 to CMDR</li> <li>Run the CER procedure</li> <li>Read the value in R1</li> </ul>                                                                                                                                                                                                                                                                                                                                                   |  |
| •                     | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure                                                                                                                                                                                                                                                                                           | <ul> <li>READING</li> <li>Write 1 in RYn3</li> <li>Send command 1033 to CMDR</li> <li>Run the CER procedure</li> <li>Read the value in R1</li> </ul>                                                                                                                                                                                                                                                                                                                                                   |  |
| •                     | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure                                                                                                                                                                                                                                                                                           | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1                                                                                                                                                                                                                                                                                                                                                                   |  |
| •                     | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,                                                                                                                                                                                                                                                            | READING   Write 1 in RYn3  Send command 1033 to CMDR  Run the CER procedure  Read the value in R1   CLL  GENERIC INTERFACES  READING                                                                                                                                                                                                                                                                                                                                                                   |  |
| • • • •               | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1                                                                                                                                                                                                                        | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1         LL         GENERIC INTERFACES         READING         • Send command 1010 to CMDR                                                                                                                                                                                                                                                                         |  |
| • • • •               | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1<br>Send command 1009 to CMDR                                                                                                                                                                                           | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1         LL         GENERIC INTERFACES         READING         • Send command 1010 to CMDR         • Read the value in R1                                                                                                                                                                                                                                          |  |
| • • • •               | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1<br>Send command 1009 to CMDR                                                                                                                                                                                           | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1         U         GENERIC INTERFACES         READING         • Send command 1010 to CMDR         • Read the value in R1                                                                                                                                                                                                                                           |  |
| • • • • •             | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1<br>Send command 1009 to CMDR                                                                                                                                                                                           | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1         UL         GENERIC INTERFACES         READING         • Send command 1010 to CMDR         • Read the value in R1                                                                                                                                                                                                                                          |  |
| • • • •               | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1<br>Send command 1009 to CMDR                                                                                                                                                                                           | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1         U         GENERIC INTERFACES         READING         • Send command 1010 to CMDR         • Read the value in R1         TMTERFACE         READING                                                                                                                                                                                                         |  |
| •<br>•<br>•<br>•      | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1<br>Send command 1009 to CMDR<br>CC-LINK I<br>WRITING<br>Write the value in W1                                                                                                                                                 | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1         LL         GENERIC INTERFACES         READING         • Send command 1010 to CMDR         • Read the value in R1         INTERFACE         READING         • NTERFACE         READING         • Write 1 in RYn3                                                                                                                                           |  |
| •<br>•<br>•<br>•      | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1<br>Send command 1009 to CMDR<br>CC-LINK I<br>WRITING<br>Write the value in W1<br>Write 0 in RYn3                                                                                                                       | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1         U         GENERIC INTERFACES         READING         • Send command 1010 to CMDR         • Read the value in R1         INTERFACE         READING         • Write 1 in RYn3         • Send command 1009 to CMDR                                                                                                                                           |  |
| •<br>•<br>•<br>•      | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1<br>Send command 1009 to CMDR<br>CC-LINK I<br>Write the value in W1<br>Write the value in W1<br>Write the value in W1<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1009 to CMDR                          | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Read the CER procedure         • Read the value in R1 <b>EXAMPLE BEADING</b> • Send command 1010 to CMDR         • Send command 1010 to CMDR         • Read the value in R1 <b>EXAMPLE EXAMPLE</b> • Send command 1010 to CMDR         • Read the value in R1 <b>EXAMPLE EXAMPLE</b> • READING         • Write 1 in RYn3       Send command 1009 to CMDR         • Run the CER procedure       • Run the CER procedure |  |
| •<br>•<br>•<br>•<br>• | WRITING<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1033 to CMDR<br>Run the CER procedure<br>FRI<br>MODBUS, PROFIBUS-DP,<br>WRITING<br>Write the value in W1<br>Send command 1009 to CMDR<br>CC-LINK I<br>Write the value in W1<br>Write the value in W1<br>Write the value in W1<br>Write the value in W1<br>Write 0 in RYn3<br>Send command 1009 to CMDR<br>Run the CER procedure | READING         • Write 1 in RYn3         • Send command 1033 to CMDR         • Run the CER procedure         • Read the value in R1 <b>LL</b> GENERIC INTERFACES <b>READING</b> • Send command 1010 to CMDR         • Read the value in R1         INTERFACE <b>READING</b> • NTERFACE <b>READING</b> • Write 1 in RYn3         • Send command 1009 to CMDR         • Run the CER procedure         • Read the value in R1                                                                            |  |

## TOLERANCE

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

## WRITING

- Write the value\* in W1
- Send command 1011 to CMDR

\*0=function disabled

#### CC-LINK INTERFACE

## WRITING

- Write the value\* in W1
- Write 0 in RYn3
- Send command 1011 to CMDR
- Run the CER procedure

- READING
- Write 1 in RYn3
- Send command 1011 to CMDR
- Run the CER procedure
- Read the value\* in R1

\*0=function disabled

## <u>SLOW</u>

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

## WRITING

- Write the value\* in W1
- Send command 1015 to CMDR
- \*0=function disabled

#### CC-LINK INTERFACE

## WRITING

- Write the value\* in W1
- Write 0 in RYn3
- Send command 1015 to CMDR
- Run the CER procedure

\*0=function disabled

## READING

READING

- Write 1 in RYn3
- Send command 1015 to CMDR

Send command 1016 to CMDR

Read the value\* in R1

- Run the CER procedure
- Read the value\* in R1

- READING
- Send command 1012 to CMDR
- Read the value\* in R1

## **TAPPING FUNCTION**

#### SLOW ON

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING • Write the value\* in W1

Send command 1017 to CMDR

## READING

- Send command 1018 to CMDR
- Read the value\* in R1

\*0=function disabled

•

CC-LINK INTERFACE

## WRITING

- Write the value\* in W1
- Write 0 in RYn3
- Send command 1017 to CMDR
- Run the CER procedure

- READING
- Write 1 in RYn3
- Send command 1017 to CMDR
- Run the CER procedure
- Read the value\* in R1

\*0=function disabled

## **SLOW OFF**

| MODBUS, PROFIBUS-DP, GENERIC INTERFACES |
|-----------------------------------------|
|-----------------------------------------|

- WRITING
- Write the value\* in W1
- Send command 1019 to CMDR

Send command 1020 to CMDR

READING

READING

Read the value\* in R1

\*0=function disabled

## CC-LINK INTERFACE

- WRITING
- Write the value\* in W1
- Write 0 in RYn3
- Send command 1019 to CMDR
- Run the CER procedure

\*0=function disabled

- Write 1 in RYn3
- Send command 1019 to CMDR
- Run the CER procedure
- Read the value\* in R1

## AUTOTARE

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### WRITING

- Write the value\* in W1
- Send command 1021 to CMDR

\*0=function disabled

#### CC-LINK INTERFACE

## WRITING

- Write the value\* in W1
- Write 0 in RYn3
- Send command 1021 to CMDR
- Run the CER procedure

- READING
- Write 1 in RYn3
- Send command 1021 to CMDR
- Run the CER procedure
- Read the value\* in R1

\*0=function disabled

## AUTOTARE DELAY

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

## WRITING

- Write the value in W1
- Send command 1023 to CMDR

• Send command 1024 to CMDR

READING

• Read the value in R1

CC-LINK INTERFACE

## WRITING

- Write the value in W1
- Write 0 in RYn3
- Send command 1023 to CMDR
- Run the CER procedure

# READING

- Write 1 in RYn3
- Send command 1023 to CMDR
- Run the CER procedure
- Read the value in R1

• \/

- READING
- Send command 1022 to CMDR
- Read the value\* in R1

## STABLE TARE

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Send command 1025 to CMDR

\*0=disabled; 1=enabled

CC-LINK INTERFACE

#### ENABLING WRITING

- Write the enabling status\* in W1
- Write 0 in RYn3
- Send command 1025 to CMDR
- Run the CER procedure
- \*0=disabled; 1=enabled

## ENABLING READING

- Write 1 in RYn3
- Send command 1025 to CMDR
- Run the CER procedure
- Read the enabling status\* in R1

## **CONSUMPTION**

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

## **ENABLING WRITING**

- Write the enabling status\* in W1
- Send command 1039 to CMDR

- ENABLING READING Send command 1040 to CMDR
- Read the enabling status\* in R1

\*0=disabled; 1=enabled

CC-LINK INTERFACE

## **ENABLING WRITING**

- Write the enabling status\* in W1
- Write 0 in RYn3
- Send command 1039 to CMDR
- Run the CER procedure

\*0=disabled; 1=enabled

## **ENABLING READING**

- Write 1 in RYn3
- Send command 1039 to CMDR
- Run the CER procedure
- Read the enabling status\* in R1

- ENABLING READING
- Send command 1026 to CMDR
- Read the enabling status\* in R1

## WAITING CONFIRMATION FROM PC (SLAVE)

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### **ENABLING WRITING**

- Write the enabling status\* in W1
- Send command 1047 to CMDR

\*0=disabled; 1=enabled

#### CC-LINK INTERFACE

## ENABLING WRITING

- Write the enabling status\* in W1
- Write 0 in RYn3
- Send command 1047 to CMDR
- Run the CER procedure

#### \*0=disabled; 1=enabled

## **ENABLING READING**

**ENABLING READING** 

Send command 1048 to CMDR

• Read the enabling status\* in R1

- Write 1 in RYn3
- Send command 1047 to CMDR
- Run the CER procedure
- Read the enabling status\* in R1

## FORMULA PROGRAMMING

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### SET WRITING

- Write the value in W1
- Send command 1087 to CMDR

#### **PRESET WRITING**

- Write the value in W1
- Send command 1089 to CMDR

## CANCELLATION OF THE FORMULA

• Send command 1091 to CMDR

#### CC-LINK INTERFACE

#### **SET WRITING**

#### Write the value in W1

- Write 0 in RYn3
- Send command 1087 to CMDR
- Run the CER procedure

#### **PRESET WRITING**

- Write the value in W1
- Write 0 in RYn3
- Send command 1089 to CMDR
- Run the CER procedure

## CANCELLATION OF THE FORMULA

- Write 0 in RYn3
- Send command 1091 to CMDR
- Run the CER procedure

#### SET READING

- Write 1 in RYn3
- Send command 1087 to CMDR
- Run the CER procedure
- Read the value in R1

#### PRESET READING

- Write 1 in RYn3
- Send command 1089 to CMDR
- Run the CER procedure
- Read the value in R1

- SET READING
- Send command 1088 to CMDR
- Read the value in R1

## PRESET READING

- Send command 1090 to CMDR
- Read the value in R1

## **BATCHING INSTRUMENT STATUS (BIS)**

This register contains information relating to the batching phases of the instrument.

| BIS (BATCHING INSTRUMENT STATUS) |             |                                                  |  |  |  |  |
|----------------------------------|-------------|--------------------------------------------------|--|--|--|--|
| Decimal Binary                   |             | Instrument condition                             |  |  |  |  |
| 0                                | 0b00000000  | Instrument in idle condition (weight displaying) |  |  |  |  |
| 1                                | 0b00000001  | Formulas displaying                              |  |  |  |  |
| 2                                | 0b00000010  | Batching constants displaying                    |  |  |  |  |
| 3                                | 0b00000011  | Consumption displaying                           |  |  |  |  |
| 4                                | 0b00000100  | System parameters displaying                     |  |  |  |  |
| 5                                | 0b00000101  | Setting of formula number and cycles to batch    |  |  |  |  |
| 6                                | 0b00000110  | Instrument in batching condition                 |  |  |  |  |
| 7                                | 0b00000111  | ENPLY alarm                                      |  |  |  |  |
| 8                                | 0b000001000 | alarm                                            |  |  |  |  |
| 9                                | 0b000001001 | ۲۵۰۵۶ alarm                                      |  |  |  |  |
| 10                               | 0b000001010 | ER-EP alarm                                      |  |  |  |  |
| 11                               | 0b000001011 | LOAd alarm                                       |  |  |  |  |
| 12                               | 0b000001100 | Batching in waiting phase                        |  |  |  |  |
| 13                               | 0b000001101 | Batching paused                                  |  |  |  |  |
| 14                               | 0b000001110 | Batching in cycle end phase                      |  |  |  |  |
| 15                               | 0b000001111 | UnLOAd alarm                                     |  |  |  |  |
| 18                               | 0b000010010 | FALL alarm                                       |  |  |  |  |
| 20                               | 0b000010100 | Weight not stable                                |  |  |  |  |
| 25                               | 0b000011001 | EOL alarm                                        |  |  |  |  |
| 33                               | 0b000100001 | Er UEI G alarm                                   |  |  |  |  |
| 40                               | 0b000101000 | Waiting for the PC to read the batching data     |  |  |  |  |

PROFIBUS-DP, GENERIC INTERFACES

- Send command 6803 to CMDR
- Read BIS in R1

MODBUS INTERFACE

Read BIS in IS

CC-LINK INTERFACE

- Send command 6803 to CMDR
- Run the CER procedure
- Read BIS in R1

## **CONSUMPTION MANAGEMENT**

#### MODBUS, PROFIBUS-DP, GENERIC INTERFACES

#### **CONSUMPTION READING**

- Send command 1083 to CMDR
- Read the value in R1

#### **CONSUMPTION DELETION**

- Send command 1085 to CMDR
- Read the value in R1

#### CC-LINK INTERFACE

#### CONSUMPTION READING

- Write 1 in RYn3
- Send command 1083 to CMDR
- Run the CER procedure
- Read the value in R1

#### **CONSUMPTION DELETION**

- Write 0 in RYn3
- Send command 1085 to CMDR
- Run the CER procedure
- Read the value in R1

## ALARM MANAGEMENT



The status of the instrument alarms is expressed through 4-byte numbers in which the two H byte represent ERC and the two L byte represent AERC.

| ERC                                                                   |              | AERC                 |                                         |                                                    |  |
|-----------------------------------------------------------------------|--------------|----------------------|-----------------------------------------|----------------------------------------------------|--|
| error code                                                            |              | auxiliary error code |                                         | Cause of error                                     |  |
| Decimal                                                               | Binary       | ry Decimal Binary    |                                         |                                                    |  |
| Load cell error                                                       |              |                      |                                         |                                                    |  |
|                                                                       |              | 1                    | 0b00000001                              | ErCELr                                             |  |
|                                                                       |              | 2                    | 0b00000010                              | ErCEL I                                            |  |
| 1                                                                     | 0b000000001  | 4                    | 0b00000100                              | ErCEL2                                             |  |
|                                                                       |              | 8                    | 0b00001000                              | ErCEL3                                             |  |
|                                                                       |              | 16                   | 0b000010000                             | ErCEL4                                             |  |
| Instrument erro                                                       | r            |                      |                                         |                                                    |  |
|                                                                       |              | 1                    | 0b00000001                              |                                                    |  |
|                                                                       | 0Ь000000100  | 2                    | 0b00000010                              | Er DL                                              |  |
|                                                                       |              | 4                    | 0b00000100                              | Er Ad                                              |  |
| 4                                                                     |              | 16                   | 0600010000                              | Gross weight over the<br>maximum displayable value |  |
|                                                                       |              | 32                   | 0b000100000                             | Net weight over the maximum displayable value      |  |
| Diagnostics error, if the load<br>diagnostics is enabled<br>(RUE=9E5) |              |                      |                                         |                                                    |  |
|                                                                       | 0600001000 - | 1                    | 060000000000000000000000000000000000000 | Load percentage<br>on channel 1 > Er5EL            |  |
|                                                                       |              | 2                    | 06000000010                             | Load percentage<br>on channel 2 > Er5EL            |  |
| ŏ                                                                     |              | 4                    | 0b000000100                             | Load percentage<br>on channel 3 > Er5EE            |  |
|                                                                       |              | 8                    | 0b000001000                             | Load percentage<br>on channel 4 > Er5EE            |  |

| Diagnostics error<br>diagnostics on z<br>(AUL D=YES) | or, if the<br>zero is enabled |    |             |                                          |
|------------------------------------------------------|-------------------------------|----|-------------|------------------------------------------|
|                                                      | 0b000001000                   | 1  | 0b00000001  | Load percentage<br>on channel 1 > Er5ELD |
| 0                                                    |                               | 2  | 0b00000010  | Load percentage<br>on channel 2 > Er5ELD |
| 0                                                    |                               | 4  | 0600000100  | Load percentage<br>on channel 3 > Er5ELD |
|                                                      |                               | 8  | 0b000001000 | Load percentage<br>on channel 4 > Er5ELD |
| Writing error                                        |                               |    |             |                                          |
| 16                                                   | 0b000010000                   | 1  | 0b00000001  | The data to be saved is incorrect        |
| Batching error                                       |                               |    |             |                                          |
|                                                      | 06000100000                   | 2  | 0b00000010  | [0n52                                    |
|                                                      |                               | 3  | 0b00000011  | EAre?                                    |
|                                                      |                               | 4  | 0b00000100  | LOAd                                     |
|                                                      |                               | 5  | 0b00000101  | UnLORd                                   |
| 32                                                   |                               | 7  | 0b00000111  | FALL                                     |
|                                                      |                               | 10 | 0b000001010 | FOL                                      |
|                                                      |                               | 11 | 0b000001011 | ErUEI G                                  |
|                                                      |                               | 12 | 0b000001100 | SLAJE                                    |
|                                                      |                               | 13 | 0b000001101 | ЕПРЕЯ                                    |
| Overload error                                       |                               |    |             |                                          |
|                                                      | 06001000000                   | 1  | 0b00000001  | CHOL I                                   |
| 64                                                   |                               | 2  | 0b00000010  | CHOL 2                                   |
| 04                                                   |                               | 4  | 0b00000100  | CHOL 3                                   |
|                                                      |                               | 8  | 0b00001000  | CHOL 4                                   |
| Command error                                        | •                             |    |             |                                          |
| 256 0b10000000                                       |                               | 0  | 0b00000000  | The received command does<br>not exist   |

## READING OF THE ALARMS STATUS

MODBUS, PROFIBUS-DP, GENERIC INTERFACES

- Send command 6800 to CMDR
- Read ERC in the two H byte of R1
- Read AERC in the two L byte of R1

#### CC-LINK INTERFACE

- Send command 6800 to CMDR
- Run the CER procedure
- Read ERC in the two H byte of R1
- Read AERC in the two L byte of R1

#### ALARMS MANAGEMENT DURING THE BATCHING

| ACTIVE<br>ALARM | MODBUS, PROFIBUS-DP,<br>GENERIC INTERFACES                                    | CC-LINK INTERFACE                                                                                                              |  |  |
|-----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| LArE7           | • Send command 206 to CMDR to cancel the alarm and continue with the batching | <ul> <li>Send command 206 to CMDR to cancel the alarm and continue with the batching</li> <li>Run the CER procedure</li> </ul> |  |  |
| FOL             | • Send command 207 to CMDR to cancel the alarm and continue with the batching | <ul> <li>Send command 207 to CMDR to cancel the alarm and continue with the batching</li> <li>Run the CER procedure</li> </ul> |  |  |
| ЕПРЕЯ           |                                                                               |                                                                                                                                |  |  |
| ErUEI G         | Send command 205 to CMDR     to accopt the alarm and stop                     | <ul> <li>Send command 205 to CMDR to accept the<br/>alarm and stop the batching</li> </ul>                                     |  |  |
| FALL            | the batching                                                                  | Run the CER procedure                                                                                                          |  |  |
| PArSEr          |                                                                               |                                                                                                                                |  |  |

## **USE AND CALIBRATION OF CONVERTER POINTS**

## **READING DIVISIONS WITH SIGN OF EACH WEIGHTING CHANNEL**

When this operating mode is enabled, the output data from the instrument transmits the points of each connected load cell, in low (16 bit) or high (24 bit) resolution.

| Input signal on single channel | Low resolution | High resolution |
|--------------------------------|----------------|-----------------|
| 0 mV                           | 0              | 0               |
| 10 mV                          | 8000           | 200000          |
| -10 mV                         | -8000          | -2000000        |

 $\mathcal{M}$ 

Only the points of each connected load cell are transmitted, without any filter applied; the calculation of the weight value and the zeroing and calibration operations are carried out by the customer.

## Mode: 4x divisions LowRes

MODBUS INTERFACE

#### ENABLING

• Send command 24 to CMDR

| Output Data from instrument (Reading)          | Register |
|------------------------------------------------|----------|
| Channel 1 reading divisions – Low Res [2 byte] | 40051    |
| Channel 2 reading divisions – Low Res [2 byte] | 40052    |
| Channel 3 reading divisions – Low Res [2 byte] | 40053    |
| Channel 4 reading divisions – Low Res [2 byte] | 40054    |

#### GENERIC INTERFACE

#### ENABLING

• Send command 24 to CMDR

• Send command 27 to CMDR

DISABLING

DISABLING

Send command 27 to CMDR

| Output Data from instrument (Reading)          | Adresses      |
|------------------------------------------------|---------------|
| Channel 1 reading divisions – Low Res [2 byte] | 0x0000-0x0001 |
| Channel 2 reading divisions – Low Res [2 byte] | 0x0002-0x0003 |
| Channel 3 reading divisions – Low Res [2 byte] | 0x0004-0x0005 |
| Channel 4 reading divisions – Low Res [2 byte] | 0x0006-0x0007 |
| -                                              | 0x0008-0x000F |

#### ENABLING

- Send command 24 to CMDR
- Run the CER procedure

## DISABLING

- Send command 27 to CMDR
- Run the CER procedure

| RWr                                            |           |            |            |  |  |
|------------------------------------------------|-----------|------------|------------|--|--|
| Output Data from instrument (Reading)          | Adresses  |            |            |  |  |
| Output Data from instrument (Reading)          | 1 station | 2 stations | 4 stations |  |  |
| Channel 1 reading divisions – Low Res [2 byte] | *         | Wr0000     | Wr0000     |  |  |
| Channel 2 reading divisions – Low Res [2 byte] | *         | Wr0001     | Wr0001     |  |  |
| Channel 3 reading divisions – Low Res [2 byte] | *         | Wr0002     | Wr0002     |  |  |
| Channel 4 reading divisions – Low Res [2 byte] | *         | Wr0003     | Wr0003     |  |  |
|                                                | *         | Wr0004-    | Wr0004-    |  |  |
| -                                              |           | Wr0007     | Wr0007     |  |  |
| Status Register [2 byte] * * Wr0008            |           |            |            |  |  |

\*data not available for this number of stations

## Mode: 4x divisions HiRes

#### MODBUS INTERFACE

#### ENABLING

DISABLING

• Send command 25 to CMDR

• Send command 27 to CMDR

| Output Data from instrument (Reading)           | Registers   |
|-------------------------------------------------|-------------|
| Channel 1 reading divisions – High Res [4 byte] | 40051-40052 |
| Channel 2 reading divisions – High Res [4 byte] | 40053-40054 |
| Channel 3 reading divisions – High Res [4 byte] | 40055-40056 |
| Channel 4 reading divisions – High Res [4 byte] | 40057-40058 |

#### PROFIBUS-DP INTERFACE



The PROFIBUS-DP protocol has special software modules for the transmission of the divisions with sign in high resolution (24 bit) of each weighing channel.

| NAME             | DESCRIPTION         | R/W | DIMENSION |
|------------------|---------------------|-----|-----------|
| TLB4 Divisions 1 | Channel 1 divisions | R   | 4 byte    |
| TLB4 Divisions 2 | Channel 2 divisions | R   | 4 byte    |
| TLB4 Divisions 3 | Channel 3 divisions | R   | 4 byte    |
| TLB4 Divisions 4 | Channel 4 divisions | R   | 4 byte    |

#### ENABLING

• Send command 25 to CMDR

| Output Data from instrument (Reading)           | Adresses      |
|-------------------------------------------------|---------------|
| Channel 1 reading divisions – High Res [4 byte] | 0x0000-0x0003 |
| Channel 2 reading divisions – High Res [4 byte] | 0x0004-0x0007 |
| Channel 3 reading divisions – High Res [4 byte] | 0x0008-0x000B |
| Channel 4 reading divisions – High Res [4 byte] | 0x000C-0x000F |
|                                                 |               |

#### CC-LINK INTERFACE

#### ENABLING

- Send command 25 to CMDR
- Run the CER procedure

Send command 27 to CMDR

DISABLING

• Run the CER procedure

| RWr                                              |           |            |            |  |  |  |
|--------------------------------------------------|-----------|------------|------------|--|--|--|
| Output Data from instrument (Deading)            | Adresses  |            |            |  |  |  |
| Output Data from instrument (Reading)            | 1 station | 2 stations | 4 stations |  |  |  |
| Channel 1 reading divisions – High Res [4 byte]  | *         | Wr0000-    | Wr0000-    |  |  |  |
|                                                  |           | Wr0001     | Wr0001     |  |  |  |
| Channel 2 reading divisions – High Res [4 byte]  | *         | Wr0002-    | Wr0002-    |  |  |  |
|                                                  |           | Wr0003     | Wr0003     |  |  |  |
| Channel 2 reading divisions High Res [4 byte]    | *         | Wr0004-    | Wr0004-    |  |  |  |
| Channel 5 reading divisions – Fligh Res [4 byte] |           | Wr0005     | Wr0005     |  |  |  |
| Channel 4 reading divisions – High Res [4 byte]  | *         | Wr0006-    | Wr0006-    |  |  |  |
|                                                  |           | Wr0007     | Wr0007     |  |  |  |
| Status Register [2 byte]                         | *         | *          | Wr0008     |  |  |  |
|                                                  |           |            |            |  |  |  |

\* data not available for this number of stations

## **EXAMPLE OF USE OF CONVERTER POINTS**

When the instrument is connected to a system, it can be used to read the weight directly from the protocol or, alternatively, the weight can be calculated by the PC or PLC system to which the instrument is connected. In the latter case, the calibration can be performed as follows: if the transmitter sends e.g. 6500 divisions (converter points) when the tank is empty, and after putting a sample weight of 10000 kg it sends 49833 divisions, in order to find out the weight you will simply need to subtract from the divisions read those relative to the empty tank and then divide the result by a constant given by the following calculation:

(49833-6500)/10000=4,333

so, if the PC or PLC receives 40000 divisions, the weight will be given by:

(40000-6500)/4,333=7731 kg

DISABLING

• Send command 27 to CMDR

## SERIAL PROTOCOLS

## FAST CONTINUOUS TRANSMISSION PROTOCOL

This protocol allows the continuous transmission of the weight at high update frequencies. Up to 300 strings per second are transmitted with a minimum transmission rate of 38400 baud. Following communication modes availables (see section **SERIAL COMMUNICATION SETTING** in instrument manual):

- **NDd L**: communication compatible with TX RS485 instruments
- **NDd Ed**: communication compatible with TD RS485 instruments

If **DDd E** is set, the following string is transmitted to PC/PLC:

where: **XXXXXX**.....6 characters of gross weight (48 ÷ 57 ASCII) CR.....1 character return to the start (13 ASCII) LF.....1 character on new line (10 ASCII)

In case of negative weight, the first character from the left of the weight characters takes on the value "-" (minus sign - ASCII 45).

If **5***L* **L**=**JE5** (see section **SERIAL COMMUNICATION SETTING** in instrument manual), the following string is transmitted to PC/PLC:

#### **yxxxxx**CRLF

where: **y** ......1 character of weight stability identification (S=weight stable, N=weight not stable)

In case of error or alarm, the 6 characters of the weight are substituted by the messages found in the table of the ALARMS section (see the instrument manual).

If **NDd Ed** is set, the following string is transmitted to PC/PLC: &<u>TzzzzzPzzzzz</u>\ckckCR

where: **&**.....1 initial string character (38 ASCII)

**T**.....1 character of gross weight identification

**P**.....1 character of gross weight identification

zzzzz.....6 characters of gross weight (48 ÷ 57 ASCII)

\.....1 character of separation (92 ASCII)

- **CR**.....1 character of end string (13 ASCII)

In case of negative weight, the first character from the left of the weight characters takes on the value "-" (minus sign - ASCII 45).

In case of error or alarm, the 6 characters of the gross weight are substituted by the messages found in the table of the ALARMS section (see the instrument manual).

**FAST TRANSMISSION VIA EXTERNAL CONTACT:** it's possible to transmit the weight, just once, even closing an input for no more than a second (see sections **OUTPUTS AND INPUTS CONFIGURATION** and **SERIAL COMMUNICATION SETTINGS** in instrument manual).

## CONTINUOUS WEIGHT TRANSMISSION TO REMOTE DISPLAYS PROTOCOL

This protocol allows the continuous weight transmission to remote displays. The communication string is transmitted 10 times per second.

Following communication modes availables (see section **SERIAL COMMUNICATION SETTING** in instrument manual):

- *rI P*: communication with RIP5/20/60, RIP50SHA, RIPLED series remote displays; the remote display shows the net weight or gross weight according to its settings
- HdrI P: communication with RIP6100, RIP675, RIP6125C series remote displays; the remote display shows the net weight or gross weight according to its settings
- Hdrl Pn: communication with RIP6100, RIP675, RIP6125C series remote displays

In case of negative weight, the first character from the left of the weight characters takes on the value "-" (minus sign - ASCII 45).

If *Hdrl P* has been set, the decimal point at the position shown on the instrument's display can also be transmitted. In this case, if the value exceeds 5 digits, only the 5 most significant digits are transmitted, while if the value is negative, no more than the 4 most significant digits are transmitted. In both cases, however, the decimal point shifts consistently with the value to display.

If Hdr! Pro has been set, in addition to what stated in Hdr! P protocol, the instrument transmits the prompt  $rrcE_{E}$  every 4 seconds in the gross weight field, if on the instrument, it has been carried out a net operation (see section **SEMI-AUTOMATIC TARE (NET/GROSS)** in instrument manual).

In case of weight value is under -99999, the minus sign "-" is sent alternated with the most significant figure. In case of error or alarm, the 6 characters of the gross weight and net weight are substituted by the messages found in the table of the ALARMS section (see the instrument manual).

## ASCII BIDIRECTIONAL PROTOCOL

The instrument replies to the requests sent from a PC/PLC.

It is possible to set a waiting time for the instrument before it transmits a response (see *dELRY* parameter in section **SERIAL COMMUNICATION SETTING** in instrument manual).

Following communication modes availables (see section **SERIAL COMMUNICATION SETTING** in instrument manual):

- **ПDdU6D**: communication compatible with instruments series W60000, WL60 Base, WT60 Base, TLA600 Base
- *NDd Ld*: communication compatible with TD RS485 instruments

## Captions:

\$.....Beginning of a request string (36 ASCII)
a or & .....Beginning of a response string (38 ASCII)
a a.....2 characters of instrument address (48 ÷ 57 ASCII)
!.....1 character to indicate the correct reception (33 ASCII)
?.....1 character to indicate a reception error (63 ASCII)
#.....1 character to indicate an error in the command execution (23 ASCII)
ckck:......2 ASCII characters of Check-Sum (for further information, see section CHECK-SUM CALCULATION)
CR.....1 character for string end (13 ASCII)
\.....1 character of separation (92 ASCII)

## • SETPOINT PROGRAMMING

Warning: the new values of setpoint are active immediately.

The PC transmits the ASCII string: \$aaxxxxxyckckCR

where: **xxxxxx**.....6 characters for the setpoint value ( $48 \div 57$  ASCII)

**y**=A.....set the value in the setpoint 1

- **y**=B .....set the value in the setpoint 2
- y=C.....set the value in the setpoint 3

Possible instrument responses:

- correct reception: &&<u>aa!</u>\ckckCR
- incorrect reception: & & aa? \ckckCR

Example: to set 500 in the setpoint no. 3, the PC must transmit the following command: \$01000500C47 (Cr)

#### • SETPOINT STORAGE IN EEPROM MEMORY

The setpoint are stored in the RAM memory and lost upon instrument power off. It is necessary to send a special command to save them permanently in the EEPROM memory. Please note that the writing number allowed in the EEPROM memory is limited (about 100000).

The PC transmits the ASCII string: \$aaMEMckckCR

Possible instrument responses:

- correct reception: &&<u>aa!</u>\ckckCR
- incorrect reception: &&<u>aa?</u>\ckckCR

## • READING WEIGHT, SETPOINT AND PEAK (IF PRESENT) FROM PC

The PC transmits the ASCII string: \$aajckckCR

where: j=a.....to read setpoint 1

j=b.....to read setpoint 2

j=c.....to read setpoint 3

j=t.....to read gross weight

j=n.....to read net weight

j=p ......to read the gross weight peak if the ASEII parameter is set as NDdU6D; if, instead, the ASEII parameter is set on NDd Ed the gross weight will be read. To read the points, set the F5\_EED parameter equal to 50000

Possible instrument responses:

- correct reception: &<u>aaxxxxxxj</u>\ckckCR
- incorrect reception: &&<u>aa?\ckckCR</u>
- In case of peak not configured: & aa#CR

where: **<u>xxxxxx</u>**.....6 characters of the required weight value

**Notes**: in case of negative weight, the first character from the left of the weight characters takes on the value "-" (minus sign - ASCII 45). In case of weight value is under -99999, the minus sign "-" is sent alternated with the most significant figure.

#### Error messages:

in case of an instrument alarm for exceeding 110% of the full scale or 9 divisions above the value of the parameter **NR55**, the instrument sends the string: &<u>aassO-Lst</u>\ckck
in case of faulty connection of the load cells or of another alarm, the instrument sends: &<u>aassO-Fst</u>\ckck

where: **s**.....1 separator character (32 ASCII – space)

Generally refer to the section ALARMS (see the instrument manual).

### • SEMI-AUTOMATIC ZERO (WEIGHT ZERO-SETTING FOR SMALL VARIATIONS)

The PC transmits the ASCII string: \$<u>aaZEROckckCR</u>

- Possible instrument responses:
  - correct reception: &&<u>aa!</u>\ckckCR
  - incorrect reception: &&aa?\ckckCR
  - the current weight is over the maximum resettable value: &aa#CR

#### • SWITCHING FROM GROSS TO NET WEIGHT

The PC transmits the ASCII string: **\$aaNETckckCR** 

Possible instrument responses:

- correct reception: &&<u>aa!</u>\ckckCR
- incorrect reception: & & aa? \ckckCR

### • SWITCHING FROM NET TO GROSS WEIGHT

The PC transmits the ASCII string: \$<u>aaGROSS</u>ckckCR

Possible instrument responses:

- correct reception: &&<u>aa!</u>\ckckCR
- incorrect reception: &&<u>aa?</u>\ckckCR

### READING OF DECIMALS AND DIVISION NUMBER

The PC transmits the ASCII string: \$aaDckckCR

Possible instrument responses:

- correct reception: &<u>aaxy</u>\ckckCR
- incorrect reception: &&<u>aa?\ckckCR</u>

where: x.....number of decimals

**y**=3.....for division value=1

 $\mathbf{y}$ =4.....for division value=2

 $\mathbf{y}$ =5.....for division value=5

**y**=6.....for division value=10

**y**=7.....for division value=20

**y**=8.....for division value=50

y=9.....for division value=100

# • TARE WEIGHT ZERO SETTING

The PC transmits the ASCII string: \$aazckckCR

where: z.....command of weight zero-setting (122 ASCII)

Possible instrument responses:

- correct reception: <u>&aaxxxxxt</u>\ckckCR
- incorrect reception: &&<u>aa?\ckckCR</u>
- the gross weight is not displayed on the instrument: & aa#CR

where: **xxxxxx**.....6 characters to indicate the required weight value **t**.....character to indicate the weight (116 ASCII)

**Example:** zeroing the weight of the instrument with address 2

For the calibration you have to make sure that the system is unloaded or that the instrument measures a signal equal to the mV in the same condition:

query: \$02z78(Cr)

response: &0200000t\76(Cr)

If the zeroing works correctly the instrument sends the zeroed weight value ("000000").



The calibration values are stored permanently in the EEPROM memory and the number of allowed writings is limited (about 100000).

#### • REAL CALIBRATION (WITH SAMPLE WEIGHT)

After the tare zero-setting, this function allow the operator to check the calibration obtained by using sample weights and correct automatically any change between the displayed value and the actual one.

Load onto the weighing system a sample weight, which must be at least 50% of the full scale, or make so that that the instrument measures a corresponding mV signal.

The PC transmits the ASCII string: \$aasxxxxxckckCR

Possible instrument responses:

- correct reception: &<u>aaxxxxxt</u>\ckckCR
- incorrect reception or full scale equal to zero: &&aa?\ckckCR
- where: t.....character of gross weight identification (116 ASCII)

In case of correct reception, the read value has to be equal to the sample weight.

Example: calibration of the instrument no. 1 with a sample weight of 20000 kg: query: \$01s02000070 (Cr) response: &01020000t\77 (Cr)

In case of correct calibration, the read value has to be "020000".

### • KEYPAD LOCK (BLOCK THE ACCESS TO THE INSTRUMENT)

The PC transmits the ASCII string: \$aaKEYckckCR

Possible instrument responses:

- correct reception: &&<u>aa!</u>\ckckCR
- incorrect reception: &&aa?\ckckCR

### • KEYPAD UNLOCK

The PC transmits the ASCII string: \$aaFREckckCR

Possible instrument responses:

- correct reception: &&<u>aa!</u>\ckckCR
- incorrect reception: &&aa?\ckckCR

# • DISPLAY AND KEYPAD LOCK

The PC transmits the ASCII string: \$<u>aaKDIS</u>ckckCR

Possible instrument responses:

- correct reception: &&<u>aa!</u>\ckckCR
- incorrect reception: &&aa?\ckckCR

# • CHECK-SUM CALCULATION

The two ASCII characters (**ckck**) are the representation of a hexadecimal digit in ASCII characters. The check digit is calculated by executing the operation of XOR (exclusive OR) of 8-bit ASCII codes of only the string underlined.

The procedure to perform the calculation of check-sum is the following:

- Consider only the string characters highlighted with underlining
- Calculate the exclusive OR (XOR) of 8-bit ASCII codes of the characters

Example:

| character | decimal ASCII code | hexadecimal ASCII code | binary ASCII code |
|-----------|--------------------|------------------------|-------------------|
| 0         | 48                 | 30                     | 00110000          |
| 1         | 49                 | 31                     | 00110001          |
| t         | 116                | 74                     | 01110100          |
| XOR =     | 117                | 75                     | 01110101          |

- The result of the XOR operation expressed in hexadecimal notation is made up of 2 hexadecimal digit (that is, numbers from 0 to 9 and/or letters from A to F). In this case the hexadecimal code is 0x75.
- The checksum is made up of the 2 characters that represent the result of the XOR operation in hexadecimal notation (in our example the character "7" and the character "5").

On our website www.laumas.com there are videos on the guidelines for correct installation of weighing systems and video tutorials on configuring our transmitters and weight indicators.

All Laumas product manuals are available online. You can download the manuals in PDF format from www.laumas.com by consulting the Products section or the Download Area. Registration is required.

Think about the environment before you print! CERTIFICATION OF THE ENVIRONMENTAL MANAGEMENT SYSTEM in accordance with UNI EN ISO 14001. Laumas contributes to environmental protection by saving on paper consumption.